diff --git a/.gitignore b/.gitignore
index 437f417..3b19191 100644
--- a/.gitignore
+++ b/.gitignore
@@ -3,6 +3,7 @@ config.py
# Unsloth
_unsloth_sentencepiece_temp/
+unsloth_compiled_cache/
# ---> Python
# Byte-compiled / optimized / DLL files
diff --git a/data/booru/.gitignore b/data/booru/.gitignore
new file mode 100644
index 0000000..c228bb2
--- /dev/null
+++ b/data/booru/.gitignore
@@ -0,0 +1,3 @@
+*
+!README.md
+!.gitignore
diff --git a/data/booru/README.md b/data/booru/README.md
new file mode 100644
index 0000000..844345a
--- /dev/null
+++ b/data/booru/README.md
@@ -0,0 +1 @@
+Place booru images here, with filenames of the form "12345 - Tag1 Tag_2 Tag3.jpg"
diff --git a/data/package-lock.json b/data/package-lock.json
index 0e9f8e4..7edd450 100644
--- a/data/package-lock.json
+++ b/data/package-lock.json
@@ -1,5 +1,5 @@
{
- "name": "discord",
+ "name": "data",
"lockfileVersion": 3,
"requires": true,
"packages": {
diff --git a/data/proc_booru.py b/data/proc_booru.py
new file mode 100644
index 0000000..ef626a1
--- /dev/null
+++ b/data/proc_booru.py
@@ -0,0 +1,177 @@
+"""
+proc_booru.py
+This script assumes you have a folder called 'booru/' in the current directory,
+containing a bunch of images following the Shimmie Booru naming scheme, i.e.
+'12345 - Tag1 Tag2 Tag3.jpg'.
+"""
+
+import json
+import os
+from pathlib import Path
+from typing import List, Tuple
+import re
+from unsloth import FastVisionModel
+import pandas as pd
+import numpy as np
+import PIL
+import torch
+import io
+import tqdm
+
+# names of real-life people tagged in images
+NAMES = set(["James", "Vincent", "Myles", "Sam", "Jake", "Nicolai", "David", "ren", "Nazar"])
+# irrelevant tags that should just be removed
+IRRELEVANT = set(["_", "Myles'", "Vinny's", "Jake's", "tagme", "Nguyen"])
+
+def parse_filename(filename: str) -> Tuple[str, List[str]]:
+ """
+ Parse a filename of format '12345 - Tag1 Tag2 Tag3.jpg' into ID and tags.
+ Returns tuple of (id, [tags])
+ """
+ # Remove file extension
+ name = os.path.splitext(filename)[0]
+
+ # Split into ID and tags
+ match = re.match(r'(\d+)\s*-\s*(.*)', name)
+ if not match:
+ raise ValueError(f"Invalid filename format: {filename}")
+
+ image_id = match.group(1)
+ tags = match.group(2).strip().split()
+
+ # remove irrelevant tags
+ irrelevant_overlap = IRRELEVANT.intersection(tags)
+ if len(irrelevant_overlap) > 0:
+ for tag in irrelevant_overlap:
+ tags.remove(tag)
+
+ # remove ambiguous situations with people's names, since the model won't know what they look like
+ names_overlap = NAMES.intersection(tags)
+ if len(names_overlap) > 1:
+ for name in names_overlap:
+ tags.remove(name)
+
+ return image_id, tags
+
+def create_prompt(tags: List[str]) -> str:
+ """
+ Create a prompt for the LLM to generate a summary based on tags.
+ """
+ tags_str = ', '.join(tags)
+ return [
+ {
+ "role": "user",
+ "content": [
+ {
+ "type": "text",
+ "text": "You are a helpful assistant. You must write a caption describing the following image, given a list of tags describing the image. Your response must contain absolutely nothing apart from a caption. Keep it as concise as you possibly can, at a hard maximum of two sentences. Avoid describing any small details, simply focus on the main subject of the image. Responses that are simply a repeat of the input are strictly forbidden. Your responses should be said with certainty.\n\nExample:\n```\nTags: 1991_Honda_Civic, Cisco_Parking_Lot, Grayscale, Milpitas, UnionPay\nThe image depicts a black and white photograph of a 1991 Honda Civic sedan parked in a Cisco parking lot in Milpitas, with a partial UnionPay advertisement visible.\n```\n\nExample:\n```\nTags: 2015_Honda_CB300F, Encinal_Canyon_Road, Malibu\nThe image features a 2015 Honda CB300F motorcycle parked on the side of Encinal Canyon Road in Malibu.\n```"
+ },
+ {"type": "image"},
+ {
+ "type": "text",
+ "text": f"Tags: {tags_str}"
+ },
+ ]
+ }
+ ]
+
+def load_image_as_bytes(image_path: Path) -> bytes:
+ """
+ Load an image file and return it as bytes.
+ """
+ with PIL.Image.open(image_path) as img:
+ # Convert to RGB if necessary
+ if img.mode != 'RGB':
+ img = img.convert('RGB')
+
+ # Save to bytes
+ img_byte_arr = io.BytesIO()
+ img.save(img_byte_arr, format='JPEG')
+ return img_byte_arr.getvalue()
+
+def main():
+ model, tokenizer = FastVisionModel.from_pretrained(
+ "unsloth/Llama-3.2-11B-Vision-Instruct",
+ load_in_4bit = True, # Use 4bit to reduce memory use. False for 16bit LoRA.
+ use_gradient_checkpointing = "unsloth", # True or "unsloth" for long context
+ )
+ FastVisionModel.for_inference(model)
+
+ # Process all images in the booru directory
+ booru_dir = Path('booru')
+ if not booru_dir.exists():
+ raise FileNotFoundError("booru directory not found")
+
+ # Create lists to store data
+ data = []
+
+ # Get all image files
+ image_files = [f for f in os.listdir(booru_dir) if f.lower().endswith(('.jpg', '.jpeg', '.png'))]
+
+ # Process each file
+ for filename in tqdm.tqdm(image_files):
+ try:
+ filepath = booru_dir / filename
+
+ # Parse filename
+ image_id, tags = parse_filename(filename)
+
+ # Create prompt
+ prompt = create_prompt(tags)
+ input_text = tokenizer.apply_chat_template(prompt, add_generation_prompt=True)
+ image = PIL.Image.open(filepath)
+ inputs = tokenizer(
+ image,
+ input_text,
+ add_special_tokens = False,
+ return_tensors = "pt",
+ ).to("cuda")
+
+ # Generate summary using VLLM
+ outputs = model.generate(**inputs, max_new_tokens=128,
+ use_cache=True, temperature=1.5, min_p=0.1)
+ generated_text = tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)
+ generated_text = generated_text.partition('\n')[0]
+
+ # Load image as bytes
+ image_bytes = load_image_as_bytes(filepath)
+
+ data_dict = {
+ 'image_id': image_id,
+ 'filename': filename,
+ 'tags': tags,
+ 'tags_string': ' '.join(tags),
+ 'summary': generated_text,
+ }
+
+ print(data_dict)
+
+ data_dict['image_data'] = image_bytes
+
+ # Store data
+ data.append(data_dict)
+
+ # Print progress
+ print(f"Processed: {filename}")
+
+ except ValueError as e:
+ print(f"Error processing {filename}: {e}")
+ except Exception as e:
+ print(f"Unexpected error processing {filename}: {e}")
+
+ # Convert to DataFrame
+ df = pd.DataFrame(data)
+
+ # Save to Parquet
+ output_path = 'image_summaries.parquet'
+ df.to_parquet(output_path, compression='snappy')
+ print(f"\nSaved dataset to {output_path}")
+
+ # Print summary statistics
+ print(f"\nDataset Summary:")
+ print(f"Total images processed: {len(df)}")
+ print(f"Unique tags: {len(set(' '.join(df['tags_string']).split()))}")
+ print(f"Average summary length: {df['summary'].str.len().mean():.1f} characters")
+
+if __name__ == "__main__":
+ main()
diff --git a/mikuai-vision-training-notebook.ipynb b/mikuai-vision-training-notebook.ipynb
new file mode 100644
index 0000000..6fadf5b
--- /dev/null
+++ b/mikuai-vision-training-notebook.ipynb
@@ -0,0 +1,7864 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "14ac6109",
+ "metadata": {
+ "id": "IqM-T1RTzY6C",
+ "papermill": {
+ "duration": 0.021668,
+ "end_time": "2025-01-01T01:36:49.042245",
+ "exception": false,
+ "start_time": "2025-01-01T01:36:49.020577",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
Join Discord if you need help + support us if you can!\n",
+ "
\n",
+ "\n",
+ "To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth#installation-instructions---conda).\n",
+ "\n",
+ "You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "992529ab",
+ "metadata": {
+ "papermill": {
+ "duration": 0.017829,
+ "end_time": "2025-01-01T01:36:49.078747",
+ "exception": false,
+ "start_time": "2025-01-01T01:36:49.060918",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "## Kaggle is slow - you'll have to wait **5 minutes** for it to install.\n",
+ "\n",
+ "I suggest you to use our free Colab notebooks instead. I linked our Mistral Colab notebook here: [notebook](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "5891519d",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:36:49.115782Z",
+ "iopub.status.busy": "2025-01-01T01:36:49.115557Z",
+ "iopub.status.idle": "2025-01-01T01:39:57.034466Z",
+ "shell.execute_reply": "2025-01-01T01:39:57.033580Z"
+ },
+ "papermill": {
+ "duration": 187.938919,
+ "end_time": "2025-01-01T01:39:57.036077",
+ "exception": false,
+ "start_time": "2025-01-01T01:36:49.097158",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Collecting pip3-autoremove\r\n",
+ " Downloading pip3_autoremove-1.2.2-py2.py3-none-any.whl.metadata (2.2 kB)\r\n",
+ "Requirement already satisfied: pip in /usr/local/lib/python3.10/dist-packages (from pip3-autoremove) (24.1.2)\r\n",
+ "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from pip3-autoremove) (71.0.4)\r\n",
+ "Downloading pip3_autoremove-1.2.2-py2.py3-none-any.whl (6.7 kB)\r\n",
+ "Installing collected packages: pip3-autoremove\r\n",
+ "Successfully installed pip3-autoremove-1.2.2\r\n",
+ "pyarrow 18.1.0 is installed but pyarrow<15.0.0a0,>=14.0.1 is required\r\n",
+ "Redoing requirement with just package name...\r\n",
+ "dask 2024.12.1 is installed but dask==2024.8.0 is required\r\n",
+ "Redoing requirement with just package name...\r\n",
+ "google-api-core 1.34.1 is installed but google-api-core[grpc]<3.0.0dev,>=2.16.0 is required\r\n",
+ "Redoing requirement with just package name...\r\n",
+ "notebook 6.5.4 is installed but notebook==6.5.5 is required\r\n",
+ "Redoing requirement with just package name...\r\n",
+ "pyarrow 18.1.0 is installed but pyarrow<16,>=2 is required\r\n",
+ "Redoing requirement with just package name...\r\n",
+ "tbb 2022.0.0 is installed but tbb==2021.* is required\r\n",
+ "Redoing requirement with just package name...\r\n",
+ "google-api-core 1.34.1 is installed but google-api-core<3.0.0dev,>=2.10.2 is required\r\n",
+ "Redoing requirement with just package name...\r\n",
+ "The 'pycairo>=1.16.0' distribution was not found and is required by the application\r\n",
+ "Skipping pycairo\r\n",
+ "torchvision 0.19.1+cu121 (/usr/local/lib/python3.10/dist-packages)\r\n",
+ " torch 2.4.1+cu121 (/usr/local/lib/python3.10/dist-packages)\r\n",
+ " sympy 1.13.3 (/usr/local/lib/python3.10/dist-packages)\r\n",
+ " mpmath 1.3.0 (/usr/local/lib/python3.10/dist-packages)\r\n",
+ "torch 2.4.1+cu121 (/usr/local/lib/python3.10/dist-packages)\r\n",
+ " sympy 1.13.3 (/usr/local/lib/python3.10/dist-packages)\r\n",
+ " mpmath 1.3.0 (/usr/local/lib/python3.10/dist-packages)\r\n",
+ "torchaudio 2.4.1+cu121 (/usr/local/lib/python3.10/dist-packages)\r\n",
+ " torch 2.4.1+cu121 (/usr/local/lib/python3.10/dist-packages)\r\n",
+ " sympy 1.13.3 (/usr/local/lib/python3.10/dist-packages)\r\n",
+ " mpmath 1.3.0 (/usr/local/lib/python3.10/dist-packages)\r\n",
+ "Found existing installation: sympy 1.13.3\r\n",
+ "Uninstalling sympy-1.13.3:\r\n",
+ " Successfully uninstalled sympy-1.13.3\r\n",
+ "Found existing installation: torch 2.4.1+cu121\r\n",
+ "Uninstalling torch-2.4.1+cu121:\r\n",
+ " Successfully uninstalled torch-2.4.1+cu121\r\n",
+ "Found existing installation: mpmath 1.3.0\r\n",
+ "Uninstalling mpmath-1.3.0:\r\n",
+ " Successfully uninstalled mpmath-1.3.0\r\n",
+ "Found existing installation: torchvision 0.19.1+cu121\r\n",
+ "Uninstalling torchvision-0.19.1+cu121:\r\n",
+ " Successfully uninstalled torchvision-0.19.1+cu121\r\n",
+ "Found existing installation: torchaudio 2.4.1+cu121\r\n",
+ "Uninstalling torchaudio-2.4.1+cu121:\r\n",
+ " Successfully uninstalled torchaudio-2.4.1+cu121\r\n",
+ "Looking in indexes: https://download.pytorch.org/whl/cu121\r\n",
+ "Collecting torch\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/torch-2.5.1%2Bcu121-cp310-cp310-linux_x86_64.whl (780.4 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m780.4/780.4 MB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting torchvision\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/torchvision-0.20.1%2Bcu121-cp310-cp310-linux_x86_64.whl (7.3 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.3/7.3 MB\u001b[0m \u001b[31m41.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting torchaudio\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/torchaudio-2.5.1%2Bcu121-cp310-cp310-linux_x86_64.whl (3.4 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m16.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting xformers\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/xformers-0.0.29.post1-cp310-cp310-manylinux_2_28_x86_64.whl (15.3 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.3/15.3 MB\u001b[0m \u001b[31m85.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.16.1)\r\n",
+ "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch) (4.12.2)\r\n",
+ "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.3)\r\n",
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.4)\r\n",
+ "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch) (2024.6.1)\r\n",
+ "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m23.7/23.7 MB\u001b[0m \u001b[31m53.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m823.6/823.6 kB\u001b[0m \u001b[31m43.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.1/14.1 MB\u001b[0m \u001b[31m90.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting nvidia-cudnn-cu12==9.1.0.70 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting nvidia-cublas-cu12==12.1.3.1 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m410.6/410.6 MB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting nvidia-cufft-cu12==11.0.2.54 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m121.6/121.6 MB\u001b[0m \u001b[31m13.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting nvidia-curand-cu12==10.3.2.106 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 MB\u001b[0m \u001b[31m31.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting nvidia-cusolver-cu12==11.4.5.107 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.2/124.2 MB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting nvidia-cusparse-cu12==12.1.0.106 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m196.0/196.0 MB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting nvidia-nccl-cu12==2.21.5 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl (188.7 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m188.7/188.7 MB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting nvidia-nvtx-cu12==12.1.105 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m99.1/99.1 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting triton==3.1.0 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/triton-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (209.5 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m209.5/209.5 MB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting sympy==1.13.1 (from torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/sympy-1.13.1-py3-none-any.whl (6.2 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.2/6.2 MB\u001b[0m \u001b[31m94.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/cu121/nvidia_nvjitlink_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (19.8 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.8/19.8 MB\u001b[0m \u001b[31m76.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting mpmath<1.4,>=1.1.0 (from sympy==1.13.1->torch)\r\n",
+ " Downloading https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.2/536.2 kB\u001b[0m \u001b[31m33.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchvision) (1.26.4)\r\n",
+ "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision) (10.4.0)\r\n",
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (2.1.5)\r\n",
+ "Installing collected packages: mpmath, triton, sympy, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, torch, xformers, torchvision, torchaudio\r\n",
+ " Attempting uninstall: nvidia-nccl-cu12\r\n",
+ " Found existing installation: nvidia-nccl-cu12 2.23.4\r\n",
+ " Uninstalling nvidia-nccl-cu12-2.23.4:\r\n",
+ " Successfully uninstalled nvidia-nccl-cu12-2.23.4\r\n",
+ "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n",
+ "fastai 2.7.17 requires torch<2.5,>=1.10, but you have torch 2.5.1+cu121 which is incompatible.\u001b[0m\u001b[31m\r\n",
+ "\u001b[0mSuccessfully installed mpmath-1.3.0 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.21.5 nvidia-nvjitlink-cu12-12.1.105 nvidia-nvtx-cu12-12.1.105 sympy-1.13.1 torch-2.5.1+cu121 torchaudio-2.5.1+cu121 torchvision-0.20.1+cu121 triton-3.1.0 xformers-0.0.29.post1\r\n",
+ "Collecting unsloth\r\n",
+ " Downloading unsloth-2024.12.12-py3-none-any.whl.metadata (60 kB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.0/60.0 kB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hCollecting unsloth_zoo>=2024.12.7 (from unsloth)\r\n",
+ " Downloading unsloth_zoo-2024.12.7-py3-none-any.whl.metadata (16 kB)\r\n",
+ "Requirement already satisfied: torch>=2.4.0 in /usr/local/lib/python3.10/dist-packages (from unsloth) (2.5.1+cu121)\r\n",
+ "Requirement already satisfied: xformers>=0.0.27.post2 in /usr/local/lib/python3.10/dist-packages (from unsloth) (0.0.29.post1)\r\n",
+ "Collecting bitsandbytes (from unsloth)\r\n",
+ " Downloading bitsandbytes-0.45.0-py3-none-manylinux_2_24_x86_64.whl.metadata (2.9 kB)\r\n",
+ "Requirement already satisfied: triton>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from unsloth) (3.1.0)\r\n",
+ "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from unsloth) (24.1)\r\n",
+ "Collecting tyro (from unsloth)\r\n",
+ " Downloading tyro-0.9.5-py3-none-any.whl.metadata (9.4 kB)\r\n",
+ "Collecting transformers!=4.47.0,>=4.46.1 (from unsloth)\r\n",
+ " Downloading transformers-4.47.1-py3-none-any.whl.metadata (44 kB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.1/44.1 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hRequirement already satisfied: datasets>=2.16.0 in /usr/local/lib/python3.10/dist-packages (from unsloth) (3.2.0)\r\n",
+ "Requirement already satisfied: sentencepiece>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from unsloth) (0.2.0)\r\n",
+ "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from unsloth) (4.66.5)\r\n",
+ "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from unsloth) (5.9.5)\r\n",
+ "Requirement already satisfied: wheel>=0.42.0 in /usr/local/lib/python3.10/dist-packages (from unsloth) (0.44.0)\r\n",
+ "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from unsloth) (1.26.4)\r\n",
+ "Requirement already satisfied: accelerate>=0.34.1 in /usr/local/lib/python3.10/dist-packages (from unsloth) (0.34.2)\r\n",
+ "Collecting trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9 (from unsloth)\r\n",
+ " Downloading trl-0.13.0-py3-none-any.whl.metadata (11 kB)\r\n",
+ "Collecting peft!=0.11.0,>=0.7.1 (from unsloth)\r\n",
+ " Downloading peft-0.14.0-py3-none-any.whl.metadata (13 kB)\r\n",
+ "Requirement already satisfied: protobuf<4.0.0 in /usr/local/lib/python3.10/dist-packages (from unsloth) (3.20.3)\r\n",
+ "Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.10/dist-packages (from unsloth) (0.24.7)\r\n",
+ "Collecting hf_transfer (from unsloth)\r\n",
+ " Downloading hf_transfer-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.7 kB)\r\n",
+ "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.34.1->unsloth) (6.0.2)\r\n",
+ "Requirement already satisfied: safetensors>=0.4.3 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.34.1->unsloth) (0.4.5)\r\n",
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (3.16.1)\r\n",
+ "Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (18.1.0)\r\n",
+ "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (0.3.8)\r\n",
+ "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (2.1.4)\r\n",
+ "Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (2.32.3)\r\n",
+ "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (3.5.0)\r\n",
+ "Requirement already satisfied: multiprocess<0.70.17 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (0.70.16)\r\n",
+ "Requirement already satisfied: fsspec<=2024.9.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets>=2.16.0->unsloth) (2024.6.1)\r\n",
+ "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (3.10.5)\r\n",
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub->unsloth) (4.12.2)\r\n",
+ "Collecting huggingface_hub (from unsloth)\r\n",
+ " Downloading huggingface_hub-0.27.0-py3-none-any.whl.metadata (13 kB)\r\n",
+ "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (3.3)\r\n",
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (3.1.4)\r\n",
+ "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (12.1.105)\r\n",
+ "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (12.1.105)\r\n",
+ "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (12.1.105)\r\n",
+ "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (9.1.0.70)\r\n",
+ "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (12.1.3.1)\r\n",
+ "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (11.0.2.54)\r\n",
+ "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (10.3.2.106)\r\n",
+ "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (11.4.5.107)\r\n",
+ "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (12.1.0.106)\r\n",
+ "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (2.21.5)\r\n",
+ "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (12.1.105)\r\n",
+ "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (1.13.1)\r\n",
+ "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=2.4.0->unsloth) (12.1.105)\r\n",
+ "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy==1.13.1->torch>=2.4.0->unsloth) (1.3.0)\r\n",
+ "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers!=4.47.0,>=4.46.1->unsloth) (2024.9.11)\r\n",
+ "Collecting tokenizers<0.22,>=0.21 (from transformers!=4.47.0,>=4.46.1->unsloth)\r\n",
+ " Downloading tokenizers-0.21.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB)\r\n",
+ "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth) (13.8.1)\r\n",
+ "Collecting cut_cross_entropy (from unsloth_zoo>=2024.12.7->unsloth)\r\n",
+ " Downloading cut_cross_entropy-24.12.3-py3-none-any.whl.metadata (9.3 kB)\r\n",
+ "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from unsloth_zoo>=2024.12.7->unsloth) (10.4.0)\r\n",
+ "Requirement already satisfied: docstring-parser>=0.15 in /usr/local/lib/python3.10/dist-packages (from tyro->unsloth) (0.16)\r\n",
+ "Collecting shtab>=1.5.6 (from tyro->unsloth)\r\n",
+ " Downloading shtab-1.7.1-py3-none-any.whl.metadata (7.3 kB)\r\n",
+ "Requirement already satisfied: typeguard>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from tyro->unsloth) (4.3.0)\r\n",
+ "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (2.4.0)\r\n",
+ "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (1.3.1)\r\n",
+ "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (24.2.0)\r\n",
+ "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (1.4.1)\r\n",
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (6.1.0)\r\n",
+ "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (1.11.1)\r\n",
+ "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (4.0.3)\r\n",
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth) (3.3.2)\r\n",
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth) (3.10)\r\n",
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth) (2.2.3)\r\n",
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth) (2024.8.30)\r\n",
+ "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth) (3.0.0)\r\n",
+ "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth) (2.18.0)\r\n",
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=2.4.0->unsloth) (2.1.5)\r\n",
+ "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets>=2.16.0->unsloth) (2.8.2)\r\n",
+ "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets>=2.16.0->unsloth) (2024.2)\r\n",
+ "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets>=2.16.0->unsloth) (2024.1)\r\n",
+ "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth) (0.1.2)\r\n",
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->datasets>=2.16.0->unsloth) (1.16.0)\r\n",
+ "Downloading unsloth-2024.12.12-py3-none-any.whl (175 kB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m175.7/175.7 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hDownloading peft-0.14.0-py3-none-any.whl (374 kB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m374.8/374.8 kB\u001b[0m \u001b[31m16.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hDownloading huggingface_hub-0.27.0-py3-none-any.whl (450 kB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m450.5/450.5 kB\u001b[0m \u001b[31m31.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hDownloading transformers-4.47.1-py3-none-any.whl (10.1 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.1/10.1 MB\u001b[0m \u001b[31m95.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hDownloading trl-0.13.0-py3-none-any.whl (293 kB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m293.4/293.4 kB\u001b[0m \u001b[31m21.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hDownloading unsloth_zoo-2024.12.7-py3-none-any.whl (71 kB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.4/71.4 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hDownloading bitsandbytes-0.45.0-py3-none-manylinux_2_24_x86_64.whl (69.1 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.1/69.1 MB\u001b[0m \u001b[31m26.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hDownloading hf_transfer-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m88.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hDownloading tyro-0.9.5-py3-none-any.whl (112 kB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m112.5/112.5 kB\u001b[0m \u001b[31m10.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hDownloading shtab-1.7.1-py3-none-any.whl (14 kB)\r\n",
+ "Downloading tokenizers-0.21.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB)\r\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.0/3.0 MB\u001b[0m \u001b[31m98.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
+ "\u001b[?25hDownloading cut_cross_entropy-24.12.3-py3-none-any.whl (22 kB)\r\n",
+ "Installing collected packages: shtab, hf_transfer, huggingface_hub, tyro, tokenizers, transformers, cut_cross_entropy, bitsandbytes, peft, trl, unsloth_zoo, unsloth\r\n",
+ " Attempting uninstall: huggingface_hub\r\n",
+ " Found existing installation: huggingface-hub 0.24.7\r\n",
+ " Uninstalling huggingface-hub-0.24.7:\r\n",
+ " Successfully uninstalled huggingface-hub-0.24.7\r\n",
+ " Attempting uninstall: tokenizers\r\n",
+ " Found existing installation: tokenizers 0.19.1\r\n",
+ " Uninstalling tokenizers-0.19.1:\r\n",
+ " Successfully uninstalled tokenizers-0.19.1\r\n",
+ " Attempting uninstall: transformers\r\n",
+ " Found existing installation: transformers 4.44.2\r\n",
+ " Uninstalling transformers-4.44.2:\r\n",
+ " Successfully uninstalled transformers-4.44.2\r\n",
+ "Successfully installed bitsandbytes-0.45.0 cut_cross_entropy-24.12.3 hf_transfer-0.1.8 huggingface_hub-0.27.0 peft-0.14.0 shtab-1.7.1 tokenizers-0.21.0 transformers-4.47.1 trl-0.13.0 tyro-0.9.5 unsloth-2024.12.12 unsloth_zoo-2024.12.7\r\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install pip3-autoremove\n",
+ "!pip-autoremove torch torchvision torchaudio -y\n",
+ "!pip install torch torchvision torchaudio xformers --index-url https://download.pytorch.org/whl/cu121\n",
+ "!pip install unsloth"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "82af8803",
+ "metadata": {
+ "id": "r2v_X2fA0Df5",
+ "papermill": {
+ "duration": 0.055944,
+ "end_time": "2025-01-01T01:39:57.151102",
+ "exception": false,
+ "start_time": "2025-01-01T01:39:57.095158",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "* We support Llama, Mistral, CodeLlama, TinyLlama, Vicuna, Open Hermes etc\n",
+ "* And Yi, Qwen ([llamafied](https://huggingface.co/models?sort=trending&search=qwen+llama)), Deepseek, all Llama, Mistral derived archs.\n",
+ "* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n",
+ "* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n",
+ "* [**NEW**] With [PR 26037](https://github.com/huggingface/transformers/pull/26037), we support downloading 4bit models **4x faster**! [Our repo](https://huggingface.co/unsloth) has Llama, Mistral 4bit models."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "81081d4b",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:39:57.263299Z",
+ "iopub.status.busy": "2025-01-01T01:39:57.263043Z",
+ "iopub.status.idle": "2025-01-01T01:40:53.320412Z",
+ "shell.execute_reply": "2025-01-01T01:40:53.319479Z"
+ },
+ "id": "QmUBVEnvCDJv",
+ "outputId": "5eff0d61-05b4-471c-eea2-c2e84a915109",
+ "papermill": {
+ "duration": 56.11539,
+ "end_time": "2025-01-01T01:40:53.322099",
+ "exception": false,
+ "start_time": "2025-01-01T01:39:57.206709",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.\n",
+ "🦥 Unsloth Zoo will now patch everything to make training faster!\n",
+ "==((====))== Unsloth 2024.12.12: Fast Mllama vision patching. Transformers: 4.47.1.\n",
+ " \\\\ /| GPU: Tesla T4. Max memory: 14.741 GB. Platform: Linux.\n",
+ "O^O/ \\_/ \\ Torch: 2.5.1+cu121. CUDA: 7.5. CUDA Toolkit: 12.1. Triton: 3.1.0\n",
+ "\\ / Bfloat16 = FALSE. FA [Xformers = 0.0.29.post1. FA2 = False]\n",
+ " \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n",
+ "Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "e50032cd57a9417892ea70e3fd0a9f5b",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "model.safetensors.index.json: 0%| | 0.00/375k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "7cf93f9da5bf42e29f601ee3576897c2",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading shards: 0%| | 0/2 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "a5c854bd4bdf4338aa1b628307ae2017",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "model-00001-of-00002.safetensors: 0%| | 0.00/4.97G [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "2a377519792d40f1acd33f420c9d0c9d",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "model-00002-of-00002.safetensors: 0%| | 0.00/2.94G [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "9b3a216a8e994ec0aa9432cbe1287d2c",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Loading checkpoint shards: 0%| | 0/2 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "5589c504ab274effb068bc1f6486acc2",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "generation_config.json: 0%| | 0.00/210 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "f73b28abed114385b4e8eaf45bf8dfd2",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "preprocessor_config.json: 0%| | 0.00/477 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "41928c4f41b74ffc99afeb8247b05f85",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "tokenizer_config.json: 0%| | 0.00/55.9k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "594e6d48ef8b46ccafaa6472835c0489",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "tokenizer.json: 0%| | 0.00/17.2M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "7cdaf8e89d0140819d3036c7cffa9a2c",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "special_tokens_map.json: 0%| | 0.00/454 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "4e82f8b403c248618f6d9c141d01f46c",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "chat_template.json: 0%| | 0.00/5.15k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from unsloth import FastVisionModel\n",
+ "import torch\n",
+ "max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n",
+ "dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n",
+ "load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.\n",
+ "\n",
+ "# 4bit pre quantized models we support for 4x faster downloading + no OOMs.\n",
+ "fourbit_models = [\n",
+ " \"unsloth/mistral-7b-bnb-4bit\",\n",
+ " \"unsloth/mistral-7b-instruct-v0.2-bnb-4bit\",\n",
+ " \"unsloth/llama-2-7b-bnb-4bit\",\n",
+ " \"unsloth/llama-2-13b-bnb-4bit\",\n",
+ " \"unsloth/codellama-34b-bnb-4bit\",\n",
+ " \"unsloth/tinyllama-bnb-4bit\",\n",
+ " \"unsloth/llama-3-8b-bnb-4bit\",\n",
+ " \"unsloth/llama-3-70b-bnb-4bit\",\n",
+ "] # More models at https://huggingface.co/unsloth\n",
+ "\n",
+ "model, tokenizer = FastVisionModel.from_pretrained(\n",
+ " model_name = \"unsloth/Llama-3.2-11B-Vision-Instruct-unsloth-bnb-4bit\", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B\n",
+ " use_gradient_checkpointing = \"unsloth\", # True or \"unsloth\" for long context\n",
+ " load_in_4bit = load_in_4bit,\n",
+ " # token = \"hf_...\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f0a8b85e",
+ "metadata": {
+ "id": "SXd9bTZd1aaL",
+ "papermill": {
+ "duration": 0.062277,
+ "end_time": "2025-01-01T01:40:53.443926",
+ "exception": false,
+ "start_time": "2025-01-01T01:40:53.381649",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "We now add LoRA adapters so we only need to update 1 to 10% of all parameters!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "8f93fa2c",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:40:53.602745Z",
+ "iopub.status.busy": "2025-01-01T01:40:53.602423Z",
+ "iopub.status.idle": "2025-01-01T01:40:59.210658Z",
+ "shell.execute_reply": "2025-01-01T01:40:59.209971Z"
+ },
+ "id": "6bZsfBuZDeCL",
+ "outputId": "b630cc80-ff95-45a2-cc0d-38666010d73b",
+ "papermill": {
+ "duration": 5.707488,
+ "end_time": "2025-01-01T01:40:59.212195",
+ "exception": false,
+ "start_time": "2025-01-01T01:40:53.504707",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "model = FastVisionModel.get_peft_model(\n",
+ " model,\n",
+ " r = 32, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n",
+ " finetune_vision_layers = True, # False if not finetuning vision part\n",
+ " finetune_language_layers = True, # False if not finetuning language part\n",
+ " finetune_attention_modules = True, # False if not finetuning attention layers\n",
+ " finetune_mlp_modules = True, # False if not finetuning MLP layers\n",
+ " lora_alpha = 32, # Recommended alpha == r at least\n",
+ " lora_dropout = 0, # Supports any, but = 0 is optimized\n",
+ " bias = \"none\", # Supports any, but = \"none\" is optimized\n",
+ " random_state = 3407,\n",
+ " use_rslora = False, # We support rank stabilized LoRA\n",
+ " loftq_config = None, # And LoftQ\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bbe9e44b",
+ "metadata": {
+ "id": "vITh0KVJ10qX",
+ "papermill": {
+ "duration": 0.05753,
+ "end_time": "2025-01-01T01:40:59.328848",
+ "exception": false,
+ "start_time": "2025-01-01T01:40:59.271318",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "\n",
+ "### Data Prep\n",
+ "We now use the Alpaca dataset from [yahma](https://huggingface.co/datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep.\n",
+ "\n",
+ "**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n",
+ "\n",
+ "**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!\n",
+ "\n",
+ "If you want to use the `ChatML` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing).\n",
+ "\n",
+ "For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "3a74fde3",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:40:59.444214Z",
+ "iopub.status.busy": "2025-01-01T01:40:59.443934Z",
+ "iopub.status.idle": "2025-01-01T01:41:04.410001Z",
+ "shell.execute_reply": "2025-01-01T01:41:04.409044Z"
+ },
+ "id": "LjY75GoYUCB8",
+ "outputId": "9f40f734-788c-4793-c1af-e9d003337612",
+ "papermill": {
+ "duration": 5.025641,
+ "end_time": "2025-01-01T01:41:04.411709",
+ "exception": false,
+ "start_time": "2025-01-01T01:40:59.386068",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "0aca87e0f7d4459ea312cf1a7a3160a4",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "image_summaries.parquet: 0%| | 0.00/264M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "e3044302cb2e43aeae8b2aa8ee9d0006",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Generating train split: 0%| | 0/183 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/PIL/Image.py:3368: DecompressionBombWarning: Image size (101183704 pixels) exceeds limit of 89478485 pixels, could be decompression bomb DOS attack.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/PIL/Image.py:3368: DecompressionBombWarning: Image size (101192432 pixels) exceeds limit of 89478485 pixels, could be decompression bomb DOS attack.\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ],
+ "source": [
+ "from datasets import load_dataset, concatenate_datasets\n",
+ "from unsloth.chat_templates import get_chat_template\n",
+ "from PIL import Image\n",
+ "import io\n",
+ "import json\n",
+ "import random\n",
+ "\n",
+ "booru = load_dataset(\"scoliono/fembooru\", split=\"train\")\n",
+ "\n",
+ "visual_instructions = [\"Describe this image.\", \"What's going on in this picture?\", \"What is this?\", \"What's happening in this image?\", \"Tell me what's in this picture.\", \"Describe what's happening here.\"]\n",
+ "\n",
+ "def convert_to_conversation(sample):\n",
+ " conversation = [\n",
+ " { \"role\": \"user\",\n",
+ " \"content\" : [\n",
+ " {\"type\" : \"text\", \"text\" : random.choice(visual_instructions)},\n",
+ " {\"type\" : \"image\", \"image\" : Image.open(io.BytesIO(sample[\"image_data\"]))} ]\n",
+ " },\n",
+ " { \"role\" : \"assistant\",\n",
+ " \"content\" : [\n",
+ " {\"type\" : \"text\", \"text\" : sample[\"summary\"]} ]\n",
+ " },\n",
+ " ]\n",
+ " return { \"messages\" : conversation }\n",
+ "\n",
+ "def formatting_prompts_func(convos):\n",
+ " texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]\n",
+ " return { \"text\" : texts, }\n",
+ "\n",
+ "with open(\"/kaggle/input/the-group-chat/output-10k-c-dropout-nonames-replies.json\") as chatfile:\n",
+ " convos = [json.loads(j) for j in chatfile.readlines()]\n",
+ "\n",
+ "with open(\"/kaggle/input/toxicqa/toxicQAfinal.json\") as chatfile:\n",
+ " convos += [json.loads(j) for j in chatfile.readlines()]\n",
+ "\n",
+ "# shim to convert our text-only json format into one consistent with multimodal training data\n",
+ "def text_to_visual_convo(convo):\n",
+ " return [\n",
+ " { \"role\": msg[\"role\"], \"content\": [{\"type\": \"text\", \"text\": msg[\"content\"]}] }\n",
+ " for msg in convo\n",
+ " ]\n",
+ "\n",
+ "fmt_convos = [ {\"messages\": text_to_visual_convo(convo)} for convo in convos ]\n",
+ "fmt_booru = [ convert_to_conversation(sample) for sample in booru ]\n",
+ "dataset = fmt_booru #+ fmt_convos"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b12b1e45",
+ "metadata": {
+ "id": "idAEIeSQ3xdS",
+ "papermill": {
+ "duration": 0.058306,
+ "end_time": "2025-01-01T01:41:04.529231",
+ "exception": false,
+ "start_time": "2025-01-01T01:41:04.470925",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "\n",
+ "### Train the model\n",
+ "Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "116e1ce1",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:41:04.644664Z",
+ "iopub.status.busy": "2025-01-01T01:41:04.644382Z",
+ "iopub.status.idle": "2025-01-01T01:41:06.493679Z",
+ "shell.execute_reply": "2025-01-01T01:41:06.493023Z"
+ },
+ "id": "95_Nn-89DhsL",
+ "outputId": "4b809e6d-271f-446f-dec8-abe0d13259f8",
+ "papermill": {
+ "duration": 1.908619,
+ "end_time": "2025-01-01T01:41:06.495152",
+ "exception": false,
+ "start_time": "2025-01-01T01:41:04.586533",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "from trl import SFTTrainer, SFTConfig\n",
+ "from unsloth.trainer import UnslothVisionDataCollator\n",
+ "from transformers import DataCollatorForSeq2Seq\n",
+ "from unsloth import is_bf16_supported\n",
+ "from transformers import AutoProcessor\n",
+ "\n",
+ "FastVisionModel.for_training(model) # Enable for training!\n",
+ "\n",
+ "processor = AutoProcessor.from_pretrained(\"unsloth/Llama-3.2-11B-Vision-Instruct-unsloth-bnb-4bit\")\n",
+ "\n",
+ "# unsloth-zoo collator doesn't support messages without images\n",
+ "def collate_fn(examples):\n",
+ " # Get the texts and images, and apply the chat template\n",
+ " texts = [processor.apply_chat_template(example[\"messages\"], tokenize=False) for example in examples]\n",
+ " # MUST be None or be populated with images; this is what unsloth is missing\n",
+ " images = None\n",
+ " for example in examples:\n",
+ " if \"messages\" in examples:\n",
+ " for msg in examples[\"messages\"]:\n",
+ " if isinstance(msg[\"content\"], list):\n",
+ " has_image = False\n",
+ " for mode in msg[\"content\"]:\n",
+ " if mode[\"type\"] == \"image\":\n",
+ " if images is None:\n",
+ " images = []\n",
+ " images.append(mode[\"image\"])\n",
+ " has_image = True\n",
+ " if not has_image and isinstance(images, list):\n",
+ " images.append(None)\n",
+ "\n",
+ " # Tokenize the texts and process the images\n",
+ " batch = processor(texts, images, return_tensors=\"pt\", padding=True)\n",
+ "\n",
+ " # The labels are the input_ids, and we mask the padding tokens in the loss computation\n",
+ " labels = batch[\"input_ids\"].clone()\n",
+ " labels[labels == processor.tokenizer.pad_token_id] = -100\n",
+ " batch[\"labels\"] = labels\n",
+ "\n",
+ " return batch\n",
+ "\n",
+ "trainer = SFTTrainer(\n",
+ " model = model,\n",
+ " tokenizer = tokenizer,\n",
+ " train_dataset = dataset,\n",
+ " #data_collator = collate_fn,\n",
+ " data_collator = UnslothVisionDataCollator(model, tokenizer),\n",
+ " dataset_text_field = \"text\",\n",
+ " max_seq_length = max_seq_length,\n",
+ " dataset_num_proc = 2,\n",
+ " packing = False, # Can make training 5x faster for short sequences.\n",
+ " args = SFTConfig(\n",
+ " per_device_train_batch_size = 2,\n",
+ " gradient_accumulation_steps = 4,\n",
+ " warmup_steps = 5,\n",
+ " #max_steps = 30,\n",
+ " num_train_epochs = 1, # Set this instead of max_steps for full training runs\n",
+ " learning_rate = 2e-4,\n",
+ " fp16 = not is_bf16_supported(),\n",
+ " bf16 = is_bf16_supported(),\n",
+ " logging_steps = 1,\n",
+ " optim = \"adamw_8bit\",\n",
+ " weight_decay = 0.01,\n",
+ " lr_scheduler_type = \"linear\",\n",
+ " seed = 3407,\n",
+ " output_dir = \"outputs\",\n",
+ " report_to = \"none\", # For Weights and Biases\n",
+ "\n",
+ " # You MUST put the below items for vision finetuning:\n",
+ " remove_unused_columns = False,\n",
+ " dataset_text_field = \"\",\n",
+ " dataset_kwargs = {\"skip_prepare_dataset\": True},\n",
+ " dataset_num_proc = 4,\n",
+ " max_seq_length = 2048,\n",
+ " ),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "962391b6",
+ "metadata": {
+ "cellView": "form",
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:41:06.614544Z",
+ "iopub.status.busy": "2025-01-01T01:41:06.614275Z",
+ "iopub.status.idle": "2025-01-01T01:41:06.619459Z",
+ "shell.execute_reply": "2025-01-01T01:41:06.618801Z"
+ },
+ "id": "2ejIt2xSNKKp",
+ "outputId": "4815a050-0c0f-4a6a-9d93-b01c44eaea35",
+ "papermill": {
+ "duration": 0.06503,
+ "end_time": "2025-01-01T01:41:06.620624",
+ "exception": false,
+ "start_time": "2025-01-01T01:41:06.555594",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "GPU = Tesla T4. Max memory = 14.741 GB.\n",
+ "7.881 GB of memory reserved.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#@title Show current memory stats\n",
+ "gpu_stats = torch.cuda.get_device_properties(0)\n",
+ "start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
+ "max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n",
+ "print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n",
+ "print(f\"{start_gpu_memory} GB of memory reserved.\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "52bb19f4",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:41:06.736648Z",
+ "iopub.status.busy": "2025-01-01T01:41:06.736441Z",
+ "iopub.status.idle": "2025-01-01T01:55:19.558624Z",
+ "shell.execute_reply": "2025-01-01T01:55:19.557921Z"
+ },
+ "id": "yqxqAZ7KJ4oL",
+ "outputId": "3cf26aac-6042-4458-c4a6-d8849efb6a95",
+ "papermill": {
+ "duration": 852.881724,
+ "end_time": "2025-01-01T01:55:19.560033",
+ "exception": false,
+ "start_time": "2025-01-01T01:41:06.678309",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1\n",
+ " \\\\ /| Num examples = 183 | Num Epochs = 1\n",
+ "O^O/ \\_/ \\ Batch size per device = 2 | Gradient Accumulation steps = 4\n",
+ "\\ / Total batch size = 8 | Total steps = 23\n",
+ " \"-____-\" Number of trainable parameters = 134,348,800\n",
+ "🦥 Unsloth needs about 1-3 minutes to load everything - please wait!\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ "
\n",
+ " [23/23 12:53, Epoch 1/1]\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Step | \n",
+ " Training Loss | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 2.972900 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2.893800 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 2.855700 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 2.607000 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 2.517700 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 1.886900 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 1.887000 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 1.712500 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 1.482400 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 1.447500 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 1.375100 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 1.479200 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 1.241500 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 1.298700 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 1.174100 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 1.193000 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 1.151100 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 1.173700 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 0.891000 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 0.976000 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 1.198000 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 1.212600 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 1.119600 | \n",
+ "
\n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "trainer_stats = trainer.train()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "55b8762b",
+ "metadata": {
+ "cellView": "form",
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:55:19.678426Z",
+ "iopub.status.busy": "2025-01-01T01:55:19.677755Z",
+ "iopub.status.idle": "2025-01-01T01:55:19.684152Z",
+ "shell.execute_reply": "2025-01-01T01:55:19.683381Z"
+ },
+ "id": "pCqnaKmlO1U9",
+ "outputId": "cf63d152-e152-468c-ba0d-938e0d2f71a0",
+ "papermill": {
+ "duration": 0.065945,
+ "end_time": "2025-01-01T01:55:19.685303",
+ "exception": false,
+ "start_time": "2025-01-01T01:55:19.619358",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "848.9055 seconds used for training.\n",
+ "14.15 minutes used for training.\n",
+ "Peak reserved memory = 11.381 GB.\n",
+ "Peak reserved memory for training = 3.5 GB.\n",
+ "Peak reserved memory % of max memory = 77.206 %.\n",
+ "Peak reserved memory for training % of max memory = 23.743 %.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#@title Show final memory and time stats\n",
+ "used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
+ "used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n",
+ "used_percentage = round(used_memory /max_memory*100, 3)\n",
+ "lora_percentage = round(used_memory_for_lora/max_memory*100, 3)\n",
+ "print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n",
+ "print(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\n",
+ "print(f\"Peak reserved memory = {used_memory} GB.\")\n",
+ "print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n",
+ "print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n",
+ "print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "986aa13e",
+ "metadata": {
+ "id": "ekOmTR1hSNcr",
+ "papermill": {
+ "duration": 0.057392,
+ "end_time": "2025-01-01T01:55:19.838995",
+ "exception": false,
+ "start_time": "2025-01-01T01:55:19.781603",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "\n",
+ "### Inference\n",
+ "Let's run the model! You can change the instruction and input - leave the output blank!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "111e0b71",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:55:19.955392Z",
+ "iopub.status.busy": "2025-01-01T01:55:19.955102Z",
+ "iopub.status.idle": "2025-01-01T01:55:19.959163Z",
+ "shell.execute_reply": "2025-01-01T01:55:19.958475Z"
+ },
+ "id": "kR3gIAX-SM2q",
+ "outputId": "5b71f982-38c0-44c8-a4e5-58cd20b5a585",
+ "papermill": {
+ "duration": 0.063692,
+ "end_time": "2025-01-01T01:55:19.960308",
+ "exception": false,
+ "start_time": "2025-01-01T01:55:19.896616",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "if False:\n",
+ " # alpaca_prompt = Copied from above\n",
+ " FastVisionModel.for_inference(model) # Enable native 2x faster inference\n",
+ " inputs = tokenizer(\n",
+ " [\n",
+ " alpaca_prompt.format(\n",
+ " \"Continue the fibonnaci sequence.\", # instruction\n",
+ " \"1, 1, 2, 3, 5, 8\", # input\n",
+ " \"\", # output - leave this blank for generation!\n",
+ " )\n",
+ " ], return_tensors = \"pt\").to(\"cuda\")\n",
+ "\n",
+ " outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
+ " tokenizer.batch_decode(outputs)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "04376d0a",
+ "metadata": {
+ "id": "CrSvZObor0lY",
+ "papermill": {
+ "duration": 0.057197,
+ "end_time": "2025-01-01T01:55:20.074913",
+ "exception": false,
+ "start_time": "2025-01-01T01:55:20.017716",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ " You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "ddb50ced",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:55:20.191902Z",
+ "iopub.status.busy": "2025-01-01T01:55:20.191675Z",
+ "iopub.status.idle": "2025-01-01T01:55:20.195589Z",
+ "shell.execute_reply": "2025-01-01T01:55:20.194954Z"
+ },
+ "id": "e2pEuRb1r2Vg",
+ "outputId": "084aab62-2122-436a-c0cb-8871986640eb",
+ "papermill": {
+ "duration": 0.062828,
+ "end_time": "2025-01-01T01:55:20.196639",
+ "exception": false,
+ "start_time": "2025-01-01T01:55:20.133811",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "if False:\n",
+ " # alpaca_prompt = Copied from above\n",
+ " FastVisionModel.for_inference(model) # Enable native 2x faster inference\n",
+ " inputs = tokenizer(\n",
+ " [\n",
+ " alpaca_prompt.format(\n",
+ " \"Continue the fibonnaci sequence.\", # instruction\n",
+ " \"1, 1, 2, 3, 5, 8\", # input\n",
+ " \"\", # output - leave this blank for generation!\n",
+ " )\n",
+ " ], return_tensors = \"pt\").to(\"cuda\")\n",
+ "\n",
+ " from transformers import TextStreamer\n",
+ " text_streamer = TextStreamer(tokenizer)\n",
+ " _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "55dafc1e",
+ "metadata": {
+ "id": "uMuVrWbjAzhc",
+ "papermill": {
+ "duration": 0.057403,
+ "end_time": "2025-01-01T01:55:20.312023",
+ "exception": false,
+ "start_time": "2025-01-01T01:55:20.254620",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "\n",
+ "### Saving, loading finetuned models\n",
+ "To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n",
+ "\n",
+ "**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "aeb56f25",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:55:20.427410Z",
+ "iopub.status.busy": "2025-01-01T01:55:20.427199Z",
+ "iopub.status.idle": "2025-01-01T01:55:26.188793Z",
+ "shell.execute_reply": "2025-01-01T01:55:26.188001Z"
+ },
+ "id": "upcOlWe7A1vc",
+ "papermill": {
+ "duration": 5.820743,
+ "end_time": "2025-01-01T01:55:26.190033",
+ "exception": false,
+ "start_time": "2025-01-01T01:55:20.369290",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "cbde2bfd51214dc6b88f049830a8902c",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "README.md: 0%| | 0.00/631 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "afa97f5c274d4598872842c4c1ea9441",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/1 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "481b462473694c2389decadd3ceca3f0",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "adapter_model.safetensors: 0%| | 0.00/538M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Saved model to https://huggingface.co/scoliono/groupchat_lora_vision_instruct-3.2-11b\n"
+ ]
+ }
+ ],
+ "source": [
+ "#model.save_pretrained(\"lora_model\") # Local saving\n",
+ "from kaggle_secrets import UserSecretsClient\n",
+ "user_secrets = UserSecretsClient()\n",
+ "hf_token = user_secrets.get_secret(\"hf_token\")\n",
+ "\n",
+ "model.push_to_hub(\"scoliono/groupchat_lora_vision_instruct-3.2-11b\", token = hf_token)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "78938644",
+ "metadata": {
+ "id": "AEEcJ4qfC7Lp",
+ "papermill": {
+ "duration": 0.057915,
+ "end_time": "2025-01-01T01:55:26.307708",
+ "exception": false,
+ "start_time": "2025-01-01T01:55:26.249793",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "6e47051d",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:55:26.424453Z",
+ "iopub.status.busy": "2025-01-01T01:55:26.424204Z",
+ "iopub.status.idle": "2025-01-01T01:55:26.428411Z",
+ "shell.execute_reply": "2025-01-01T01:55:26.427776Z"
+ },
+ "id": "MKX_XKs_BNZR",
+ "outputId": "05e5a193-dab0-41db-e07c-4b3afbdd7932",
+ "papermill": {
+ "duration": 0.06427,
+ "end_time": "2025-01-01T01:55:26.429493",
+ "exception": false,
+ "start_time": "2025-01-01T01:55:26.365223",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "if False:\n",
+ " from unsloth import FastLanguageModel\n",
+ " model, tokenizer = FastLanguageModel.from_pretrained(\n",
+ " model_name = \"scoliono/groupchat_lora_abliterated_instruct-3.1-8b\", # YOUR MODEL YOU USED FOR TRAINING\n",
+ " max_seq_length = max_seq_length,\n",
+ " dtype = dtype,\n",
+ " load_in_4bit = load_in_4bit,\n",
+ " )\n",
+ " FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
+ "\n",
+ " # alpaca_prompt = You MUST copy from above!\n",
+ "\n",
+ " inputs = tokenizer(\n",
+ " [\n",
+ " alpaca_prompt.format(\n",
+ " \"What is a famous tall tower in Paris?\", # instruction\n",
+ " \"\", # input\n",
+ " \"\", # output - leave this blank for generation!\n",
+ " )\n",
+ " ], return_tensors = \"pt\").to(\"cuda\")\n",
+ "\n",
+ " outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
+ " tokenizer.batch_decode(outputs)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c5fbcf25",
+ "metadata": {
+ "id": "QQMjaNrjsU5_",
+ "papermill": {
+ "duration": 0.057403,
+ "end_time": "2025-01-01T01:55:26.545335",
+ "exception": false,
+ "start_time": "2025-01-01T01:55:26.487932",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "ea72a298",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:55:26.662017Z",
+ "iopub.status.busy": "2025-01-01T01:55:26.661744Z",
+ "iopub.status.idle": "2025-01-01T01:55:26.665378Z",
+ "shell.execute_reply": "2025-01-01T01:55:26.664554Z"
+ },
+ "id": "yFfaXG0WsQuE",
+ "papermill": {
+ "duration": 0.06326,
+ "end_time": "2025-01-01T01:55:26.666488",
+ "exception": false,
+ "start_time": "2025-01-01T01:55:26.603228",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "if False:\n",
+ " # I highly do NOT suggest - use Unsloth if possible\n",
+ " from peft import AutoPeftModelForCausalLM\n",
+ " from transformers import AutoTokenizer\n",
+ " model = AutoPeftModelForCausalLM.from_pretrained(\n",
+ " \"groupchat_lora_abliterated_instruct-3.1-8b\", # YOUR MODEL YOU USED FOR TRAINING\n",
+ " load_in_4bit = load_in_4bit,\n",
+ " )\n",
+ " tokenizer = AutoTokenizer.from_pretrained(\"groupchat_lora_abliterated_instruct-3.1-8b\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d8795396",
+ "metadata": {
+ "id": "f422JgM9sdVT",
+ "papermill": {
+ "duration": 0.05765,
+ "end_time": "2025-01-01T01:55:26.782572",
+ "exception": false,
+ "start_time": "2025-01-01T01:55:26.724922",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### Saving to float16 for VLLM\n",
+ "\n",
+ "We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "4d481a05",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2025-01-01T01:55:26.899112Z",
+ "iopub.status.busy": "2025-01-01T01:55:26.898836Z",
+ "iopub.status.idle": "2025-01-01T01:55:28.271476Z",
+ "shell.execute_reply": "2025-01-01T01:55:28.270269Z"
+ },
+ "id": "iHjt_SMYsd3P",
+ "papermill": {
+ "duration": 1.43243,
+ "end_time": "2025-01-01T01:55:28.272613",
+ "exception": true,
+ "start_time": "2025-01-01T01:55:26.840183",
+ "status": "failed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "No files have been modified since last commit. Skipping to prevent empty commit.\n"
+ ]
+ },
+ {
+ "ename": "AttributeError",
+ "evalue": "'NoneType' object has no attribute 'name'",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# Merge to 4bit\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_pretrained_merged\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"model\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtokenizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msave_method\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"merged_4bit\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpush_to_hub_merged\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"scoliono/miku_vision_instruct-3.2-11b\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtokenizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msave_method\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"merged_4bit\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtoken\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mhf_token\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;31m# Just LoRA adapters\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/unsloth/save.py\u001b[0m in \u001b[0;36munsloth_generic_push_to_hub_merged\u001b[0;34m(self, repo_id, tokenizer, save_method, use_temp_dir, commit_message, private, token, max_shard_size, create_pr, safe_serialization, revision, commit_description, tags, temporary_location, maximum_memory_usage)\u001b[0m\n\u001b[1;32m 2229\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0marguments\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"self\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2230\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0marguments\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"repo_id\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2231\u001b[0;31m \u001b[0munsloth_generic_save\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0marguments\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2232\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2233\u001b[0m \u001b[0mgc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcollect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py\u001b[0m in \u001b[0;36mdecorate_context\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 114\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdecorate_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mctx_factory\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 116\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 117\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mdecorate_context\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/unsloth/save.py\u001b[0m in \u001b[0;36munsloth_generic_save\u001b[0;34m(model, tokenizer, save_directory, save_method, push_to_hub, token, is_main_process, state_dict, save_function, max_shard_size, safe_serialization, variant, save_peft_format, use_temp_dir, commit_message, private, create_pr, revision, commit_description, tags, temporary_location, maximum_memory_usage)\u001b[0m\n\u001b[1;32m 2130\u001b[0m ):\n\u001b[1;32m 2131\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtoken\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mpush_to_hub\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mtoken\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_token\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2132\u001b[0;31m merge_and_overwrite_lora(\n\u001b[0m\u001b[1;32m 2133\u001b[0m \u001b[0mget_model_name\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2134\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py\u001b[0m in \u001b[0;36mdecorate_context\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 114\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdecorate_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mctx_factory\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 116\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 117\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mdecorate_context\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/unsloth_zoo/saving_utils.py\u001b[0m in \u001b[0;36mmerge_and_overwrite_lora\u001b[0;34m(get_model_name, model, tokenizer, save_directory, push_to_hub, private, token, output_dtype, low_disk_space_usage, use_temp_file)\u001b[0m\n\u001b[1;32m 533\u001b[0m \u001b[0mtemp_file\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msave_directory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnew_use_temp_file\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 534\u001b[0m \u001b[0mlow_disk_space_usage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmax_shard_size_in_bytes\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 535\u001b[0;31m \u001b[0;34m)\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mprepare_saving\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 536\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 537\u001b[0m \u001b[0msave_directory\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msave_directory\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/unsloth_zoo/saving_utils.py\u001b[0m in \u001b[0;36mprepare_saving\u001b[0;34m(model, save_directory, push_to_hub, max_shard_size, private, token, output_dtype, merge_into_original, low_disk_space_usage, min_size_in_bytes, use_temp_file)\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[0;31m# Too small - try using the temporary file system (sometimes large like Kaggle)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 461\u001b[0m \u001b[0mtry_temp_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtempfile\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTemporaryDirectory\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mignore_cleanup_errors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 462\u001b[0;31m \u001b[0mtry_save_directory\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtemp_file\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 463\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 464\u001b[0m \u001b[0mtotal\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mused\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfree\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mshutil\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdisk_usage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msave_directory\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mAttributeError\u001b[0m: 'NoneType' object has no attribute 'name'"
+ ]
+ }
+ ],
+ "source": [
+ "# Merge to 16bit\n",
+ "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n",
+ "if False: model.push_to_hub_merged(\"scoliono/miku_vision_instruct-3.2-11b\", tokenizer, save_method = \"merged_16bit\", token = hf_token)\n",
+ "\n",
+ "# Merge to 4bit\n",
+ "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\n",
+ "if True: model.push_to_hub_merged(\"scoliono/miku_vision_instruct-3.2-11b\", tokenizer, save_method = \"merged_4bit\", token = hf_token)\n",
+ "\n",
+ "# Just LoRA adapters\n",
+ "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n",
+ "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"lora\", token = \"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0614a39c",
+ "metadata": {
+ "id": "TCv4vXHd61i7",
+ "papermill": {
+ "duration": null,
+ "end_time": null,
+ "exception": null,
+ "start_time": null,
+ "status": "pending"
+ },
+ "tags": []
+ },
+ "source": [
+ "### GGUF / llama.cpp Conversion\n",
+ "To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n",
+ "\n",
+ "Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n",
+ "* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n",
+ "* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n",
+ "* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2641cfb7",
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2024-05-31T21:47:32.211354Z",
+ "iopub.status.idle": "2024-05-31T21:47:32.211744Z",
+ "shell.execute_reply": "2024-05-31T21:47:32.211556Z",
+ "shell.execute_reply.started": "2024-05-31T21:47:32.211541Z"
+ },
+ "id": "FqfebeAdT073",
+ "papermill": {
+ "duration": null,
+ "end_time": null,
+ "exception": null,
+ "start_time": null,
+ "status": "pending"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "# Save to 8bit Q8_0\n",
+ "if False: model.save_pretrained_gguf(\"model\", tokenizer,)\n",
+ "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, token = \"\")\n",
+ "\n",
+ "# Save to 16bit GGUF\n",
+ "if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"f16\")\n",
+ "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"f16\", token = \"\")\n",
+ "\n",
+ "# Save to q4_k_m GGUF\n",
+ "if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"q4_k_m\")\n",
+ "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"q4_k_m\", token = \"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a66fdd0a",
+ "metadata": {
+ "id": "bDp0zNpwe6U_",
+ "papermill": {
+ "duration": null,
+ "end_time": null,
+ "exception": null,
+ "start_time": null,
+ "status": "pending"
+ },
+ "tags": []
+ },
+ "source": [
+ "Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "66b076c5",
+ "metadata": {
+ "id": "Zt9CHJqO6p30",
+ "papermill": {
+ "duration": null,
+ "end_time": null,
+ "exception": null,
+ "start_time": null,
+ "status": "pending"
+ },
+ "tags": []
+ },
+ "source": [
+ "And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n",
+ "\n",
+ "Some other links:\n",
+ "1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)\n",
+ "2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)\n",
+ "3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n",
+ "4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n",
+ "5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)\n",
+ "6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n",
+ "7. `ChatML` for ShareGPT datasets, [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing)\n",
+ "8. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " Support our work if you can! Thanks!\n",
+ " "
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "gpuType": "T4",
+ "provenance": []
+ },
+ "kaggle": {
+ "accelerator": "nvidiaTeslaT4",
+ "dataSources": [
+ {
+ "datasetId": 5080560,
+ "sourceId": 8511152,
+ "sourceType": "datasetVersion"
+ },
+ {
+ "datasetId": 4675483,
+ "sourceId": 9945992,
+ "sourceType": "datasetVersion"
+ }
+ ],
+ "isGpuEnabled": true,
+ "isInternetEnabled": true,
+ "language": "python",
+ "sourceType": "notebook"
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ },
+ "papermill": {
+ "default_parameters": {},
+ "duration": 1125.26015,
+ "end_time": "2025-01-01T01:55:32.131619",
+ "environment_variables": {},
+ "exception": true,
+ "input_path": "__notebook__.ipynb",
+ "output_path": "__notebook__.ipynb",
+ "parameters": {},
+ "start_time": "2025-01-01T01:36:46.871469",
+ "version": "2.6.0"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "state": {
+ "01dad686a8d34f09a64e25526689e617": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_56c3e52b29274532b5b038ef7ee44f11",
+ "IPY_MODEL_67f99ddac5ee4cf3a49794b6d7f27a5a",
+ "IPY_MODEL_3608e77f86304b92b487db8e1c773029"
+ ],
+ "layout": "IPY_MODEL_f1e29e45f035424e8bc32528330fd494",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "0414691402b34bb09690dece00175dce": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "04f08fd71db1446788079c68e4f6a595": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_824111dd0e934d88818d897cb7c82bb8",
+ "placeholder": "",
+ "style": "IPY_MODEL_26f7731f22b14167811381f57fabb65a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "chat_template.json: 100%"
+ }
+ },
+ "0614654b14fa4be28a009f8934cf0eba": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "063f3abfbec94c058179bab49a974b1f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_f34567c896ee4b0d99dc6707fc5681e6",
+ "placeholder": "",
+ "style": "IPY_MODEL_bb30371beab94f39ad6ba91b91df85b1",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "model-00002-of-00002.safetensors: 100%"
+ }
+ },
+ "0660d90e6d3d414e925325983eac8a5c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "0803b9262cd24f10a28b7ea8cb29630e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d09f524cda174a3c86d922e0c22ee643",
+ "max": 631.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_e2e3ee93092943bd8aee18a0253c7013",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 631.0
+ }
+ },
+ "0820c16a18dc4dffbc977b25d2c5fc8e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_6d2a45057c5946c7abc09a255a252d0f",
+ "placeholder": "",
+ "style": "IPY_MODEL_ab207bf69f35411b9b6d724b08a8ed06",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 4.97G/4.97G [00:10<00:00, 1.32GB/s]"
+ }
+ },
+ "09238034cd7f483686982e52a4b575aa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_68a8abdd4a6f47a2ad3e2921414f3d7e",
+ "max": 2.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b29756b1c20f4cd8ac5e35ec6f734c35",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 2.0
+ }
+ },
+ "0aca87e0f7d4459ea312cf1a7a3160a4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_804901df6d134bdc8e2e2ae9194273ac",
+ "IPY_MODEL_b96939ca0f78459ea74aec698217f2ab",
+ "IPY_MODEL_7080853af2e54abaa768d39286c3554c"
+ ],
+ "layout": "IPY_MODEL_91b41e8d5cf04f79a1483df43970aaf3",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "0bbda75fc8594298bb3d9c618abfda65": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0f9de914e704400fb064abbbd63f9f58": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "165deaee8e8a444886ca9a1902c8eddf": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "166d4570f1464011b72c8583200b96a5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "danger",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_f859a4074a944c5cbdea3b5344b893e7",
+ "max": 2937067316.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b02a7834fa9e4d529577c3197b5b580f",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 2937067036.0
+ }
+ },
+ "17a2981140334d2596dc09a87298b756": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "17d4b85090c0496eb688a9264161fdc1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "182467335fbd49719073a473412809b5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1e0c78e62d3a4ac1bdd4e7d6f13f46b6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_c2d239415e45484293736ac7c312fdb1",
+ "max": 375214.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_847892bab3c4489c8079be536498330d",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 375214.0
+ }
+ },
+ "1f17bce08ae043e2b4738d562b0b0932": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_17d4b85090c0496eb688a9264161fdc1",
+ "placeholder": "",
+ "style": "IPY_MODEL_59bbec04821442439048fc286bb037d3",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "special_tokens_map.json: 100%"
+ }
+ },
+ "215ce3c1f5b248fa932be159f1173eaf": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "216ab1b67da94825a98e5c99351c6094": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_215ce3c1f5b248fa932be159f1173eaf",
+ "placeholder": "",
+ "style": "IPY_MODEL_ee08a77201584ac0bb19681674e555bb",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading shards: 100%"
+ }
+ },
+ "22a6c1d20beb40878b8886bc3946f1df": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "23b8cb751df24d92bcf832e183be6c72": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "24fa7efa8c104826a030fab1f2115aba": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "26f7731f22b14167811381f57fabb65a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "294e35b6dfb44d89a4f619e5db5e447f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "2a377519792d40f1acd33f420c9d0c9d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_063f3abfbec94c058179bab49a974b1f",
+ "IPY_MODEL_166d4570f1464011b72c8583200b96a5",
+ "IPY_MODEL_f2a8d04702f3423ba5963371e4370dd3"
+ ],
+ "layout": "IPY_MODEL_b38bc5300c294ec9ad0b9e6bcb19db93",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "2b4a16eebaac48799d30db59a0112ffb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2c7a954cf980445bb68f2f3b4087d13d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2d02a58218d243118d893bd8c5939e1c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_f3fe89ea63ab4f85a3ffd6efa9bc138f",
+ "placeholder": "",
+ "style": "IPY_MODEL_35ec7d3783754d94ab01e2f36bc18284",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 631/631 [00:00<00:00, 63.9kB/s]"
+ }
+ },
+ "2d76955164ef424c983553dfab36a027": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2f01b2b579694270ac0a0a42d046cac5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "321d3ec71e8c4dbfb3c9324a2553f667": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "32f619015bcc48a08546936c612b77df": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "340c9546c4f94fddace1739bd261a697": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_e62a3a37ed7b4510a131ca96807ffc9c",
+ "placeholder": "",
+ "style": "IPY_MODEL_c2de0ebf93a54d90b89b5e51795370ae",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 2/2 [00:17<00:00, 8.67s/it]"
+ }
+ },
+ "34dcdb5c063e45b9a931b465ea1345c1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "351d9116b0d945ad89df4904bd6e3e82": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "35a37e466c26413f98be100b6f991b92": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_34dcdb5c063e45b9a931b465ea1345c1",
+ "placeholder": "",
+ "style": "IPY_MODEL_533c13fcbe1e4e0c8d141b7af2d7e9a9",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 210/210 [00:00<00:00, 17.1kB/s]"
+ }
+ },
+ "35b8dd60d8144119b47023b59c55a82f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "35ec7d3783754d94ab01e2f36bc18284": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "3608e77f86304b92b487db8e1c773029": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_35b8dd60d8144119b47023b59c55a82f",
+ "placeholder": "",
+ "style": "IPY_MODEL_ac3fba25c05349c4924f898abd9fe1a3",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 1/1 [00:00<00:00, 128.74it/s]"
+ }
+ },
+ "379e6ba8b47c4b2a93e65d5d52d28334": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_7d76ed33706a43978ad1a56be861603a",
+ "placeholder": "",
+ "style": "IPY_MODEL_ddc61c4616114e1a9ef5ca99ba1f4a4a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "model-00001-of-00002.safetensors: 100%"
+ }
+ },
+ "38f4809829a545aea1377abac51d2212": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_e1e6f8123e6a4845bb53516a62febab5",
+ "placeholder": "",
+ "style": "IPY_MODEL_91b8bd3ca2b14aaeb51da26a185572da",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 375k/375k [00:00<00:00, 7.46MB/s]"
+ }
+ },
+ "3aa04cb42ad040d69f1731589a547e95": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "3b07e2daba7142f2bf712b9f6c803151": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3caacf374f6e42bcb457add5fec45c16": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_457f2bc6a1164d56a4bcd4e439b17b6e",
+ "max": 55931.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b567c613a8a64d05a2aee950bf5c4681",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 55931.0
+ }
+ },
+ "3f411d3545584dc99e1ee1674f5df014": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_50625d7c3be84891aa4fc14e35b2fdd0",
+ "max": 1.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_7fbe05c46716418294b4894d910b91f1",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 1.0
+ }
+ },
+ "406a5f54274e47c8b4cdb3712bed2944": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "41928c4f41b74ffc99afeb8247b05f85": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_754e783410564b8685e96eeac8ad2755",
+ "IPY_MODEL_3caacf374f6e42bcb457add5fec45c16",
+ "IPY_MODEL_e2b048d0feb3411580d8df4f2764e9da"
+ ],
+ "layout": "IPY_MODEL_c651491680e14ee5854146118ffd2d7b",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "457f2bc6a1164d56a4bcd4e439b17b6e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "465e8528c88f4bceb09020b58f599581": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_5fd20e4e0b614c0d9394bca9e88c5f27",
+ "max": 537553128.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b9a5523e98234a33aed49d60d209ebaf",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 537553128.0
+ }
+ },
+ "481b462473694c2389decadd3ceca3f0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_70f6ede7d85044a4951aed4c0b305ef4",
+ "IPY_MODEL_465e8528c88f4bceb09020b58f599581",
+ "IPY_MODEL_f00ff31a1ca74ea081d761f21e1bb3d8"
+ ],
+ "layout": "IPY_MODEL_b826bba5dc9b411c81462887ee0d7a89",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "4873330afbfa4b82a7f86e1180187587": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4977ac706ee749cd8b63f6b0dc56ec5e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_99be5f9f3ee54020bf3f62c2bea8ce3e",
+ "placeholder": "",
+ "style": "IPY_MODEL_8cad8d237c0c4999a6710bfc64927585",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 2/2 [00:12<00:00, 6.54s/it]"
+ }
+ },
+ "4e82f8b403c248618f6d9c141d01f46c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_04f08fd71db1446788079c68e4f6a595",
+ "IPY_MODEL_567b978b842e4d43ae1d04fcaec2cac2",
+ "IPY_MODEL_b76c9b3bf6c64607a5351a6c3faec7cd"
+ ],
+ "layout": "IPY_MODEL_e335c97b2a4a4e3495a4bd078f36ae6b",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "4eee3eb8877c42d689fa9939242c8ba8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_b57a4b1189494d7195a80e0836c6383f",
+ "placeholder": "",
+ "style": "IPY_MODEL_0660d90e6d3d414e925325983eac8a5c",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "README.md: 100%"
+ }
+ },
+ "50625d7c3be84891aa4fc14e35b2fdd0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "52c301745d1944d5ab76bada1f86bb0b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "532bbf2866cb46c2b7851d736df8bb39": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "533c13fcbe1e4e0c8d141b7af2d7e9a9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "53eff29522c1437685bd742978c0a48d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5589c504ab274effb068bc1f6486acc2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_bc16e8efa6e9484193f8943b9b272dac",
+ "IPY_MODEL_b5185f6e37074f1b8e71281a38540a80",
+ "IPY_MODEL_35a37e466c26413f98be100b6f991b92"
+ ],
+ "layout": "IPY_MODEL_165deaee8e8a444886ca9a1902c8eddf",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "567b978b842e4d43ae1d04fcaec2cac2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_182467335fbd49719073a473412809b5",
+ "max": 5151.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_321d3ec71e8c4dbfb3c9324a2553f667",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 5151.0
+ }
+ },
+ "56c3e52b29274532b5b038ef7ee44f11": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_5dc9ae4d227c49d3aa3d7b9eddc7c85e",
+ "placeholder": "",
+ "style": "IPY_MODEL_ca9c89dccf614e8e9ac135cf416a021e",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Computing checksums: 100%"
+ }
+ },
+ "5859d44a00a6464e8868f4ae43e64f10": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "594e6d48ef8b46ccafaa6472835c0489": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ca87f635c1dc4792bc53fa8c3f0983aa",
+ "IPY_MODEL_a97a0c3cab994d7da3a9f07b07f6fa6f",
+ "IPY_MODEL_848d364b67ae4d8294aa8a8419518204"
+ ],
+ "layout": "IPY_MODEL_406a5f54274e47c8b4cdb3712bed2944",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "59bbec04821442439048fc286bb037d3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "5a287c52025042cf81adf0d7faabc728": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5b63cbaabe07478e884da030590098c4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "5cbbf92dba00473fa8863b8db7972d08": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5dc9ae4d227c49d3aa3d7b9eddc7c85e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5fd20e4e0b614c0d9394bca9e88c5f27": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "67f99ddac5ee4cf3a49794b6d7f27a5a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_0bbda75fc8594298bb3d9c618abfda65",
+ "max": 1.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_32f619015bcc48a08546936c612b77df",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 1.0
+ }
+ },
+ "68a8abdd4a6f47a2ad3e2921414f3d7e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6d2a45057c5946c7abc09a255a252d0f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6f69ad80eb32491a880ac2e2e901d5b0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_4873330afbfa4b82a7f86e1180187587",
+ "placeholder": "",
+ "style": "IPY_MODEL_d40cdd3be4d6456c86087df30922a308",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 1/1 [00:01<00:00, 1.84s/it]"
+ }
+ },
+ "6f7d3b3b10ec4804858d31049defb3b2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "7080853af2e54abaa768d39286c3554c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_f6a7153bb8004e739d7a010796a6ec5c",
+ "placeholder": "",
+ "style": "IPY_MODEL_8edbd18cb41e4d87818199d4c560e80f",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 264M/264M [00:00<00:00, 335MB/s]"
+ }
+ },
+ "70f6ede7d85044a4951aed4c0b305ef4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_725a512e21054e0891c8b56bff95682e",
+ "placeholder": "",
+ "style": "IPY_MODEL_bd3dc0e4de104c628ccf6ff0765009da",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "adapter_model.safetensors: "
+ }
+ },
+ "7107fda6ab7c432f886563cce10e112e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "725a512e21054e0891c8b56bff95682e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "754e783410564b8685e96eeac8ad2755": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2f01b2b579694270ac0a0a42d046cac5",
+ "placeholder": "",
+ "style": "IPY_MODEL_294e35b6dfb44d89a4f619e5db5e447f",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "tokenizer_config.json: 100%"
+ }
+ },
+ "762aafe75d274084bb33e24eabfa68af": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_83c040e50ce04b7da79bafc288cf9bc1",
+ "max": 2.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_e420c533394f4fd2b5180a78b2b6face",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 2.0
+ }
+ },
+ "76b0e7d6026f427fbab532add8e0463d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "78c25f7d3e8b44ffbaf720a816418572": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "7cdaf8e89d0140819d3036c7cffa9a2c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1f17bce08ae043e2b4738d562b0b0932",
+ "IPY_MODEL_8ef2843398e9499b933b051c076699b8",
+ "IPY_MODEL_c3d3414095424e4398c96719ed2515df"
+ ],
+ "layout": "IPY_MODEL_0614654b14fa4be28a009f8934cf0eba",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "7cdc8833cc9c41808fd07ed77bbb6929": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_e7248032eb334a6a84098aed8ade2b73",
+ "max": 183.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_5b63cbaabe07478e884da030590098c4",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 183.0
+ }
+ },
+ "7cf93f9da5bf42e29f601ee3576897c2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_216ab1b67da94825a98e5c99351c6094",
+ "IPY_MODEL_762aafe75d274084bb33e24eabfa68af",
+ "IPY_MODEL_340c9546c4f94fddace1739bd261a697"
+ ],
+ "layout": "IPY_MODEL_a48b57a8084e444790bae0f627db2ee3",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "7d76ed33706a43978ad1a56be861603a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7fbe05c46716418294b4894d910b91f1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "804901df6d134bdc8e2e2ae9194273ac": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_5cbbf92dba00473fa8863b8db7972d08",
+ "placeholder": "",
+ "style": "IPY_MODEL_6f7d3b3b10ec4804858d31049defb3b2",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "image_summaries.parquet: 100%"
+ }
+ },
+ "81b72cad4c184243b2ab48988d4a99c5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "824111dd0e934d88818d897cb7c82bb8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "83c040e50ce04b7da79bafc288cf9bc1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "847892bab3c4489c8079be536498330d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "848d364b67ae4d8294aa8a8419518204": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d78b8654fd6a4563bc9414e61684fe94",
+ "placeholder": "",
+ "style": "IPY_MODEL_8bb525f3c91b41dd87513c2b4606a820",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 17.2M/17.2M [00:00<00:00, 40.5MB/s]"
+ }
+ },
+ "87ac8f6efd9446a59aaf02063eaaaf95": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "8b52cd2823c541f0ac8dfe18e276affc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "8bb525f3c91b41dd87513c2b4606a820": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "8cad8d237c0c4999a6710bfc64927585": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "8ec3cf3f37ee4e7e914062b80f121891": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "8edbd18cb41e4d87818199d4c560e80f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "8ef2843398e9499b933b051c076699b8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_3b07e2daba7142f2bf712b9f6c803151",
+ "max": 454.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c5b1f893937e4ec3b806e7639ddd2258",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 454.0
+ }
+ },
+ "908603559d3a48b18c395d24dcc27ddb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "91b41e8d5cf04f79a1483df43970aaf3": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "91b8bd3ca2b14aaeb51da26a185572da": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "9565a235f57342999847c5c026bb6966": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_ea9e8f30af424475b6d3acadb77ba41c",
+ "placeholder": "",
+ "style": "IPY_MODEL_ca516d3def8f409f9bb12ee6e198634a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 183/183 [00:01<00:00, 130.80 examples/s]"
+ }
+ },
+ "95b3cd0b73eb40a2a8f4bbab8e6063ee": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "95bdf4d3b4cd4657b2e23ed69293f0f6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "99be5f9f3ee54020bf3f62c2bea8ce3e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9b3a216a8e994ec0aa9432cbe1287d2c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f2aee84317eb442783eb7f05164d8799",
+ "IPY_MODEL_09238034cd7f483686982e52a4b575aa",
+ "IPY_MODEL_4977ac706ee749cd8b63f6b0dc56ec5e"
+ ],
+ "layout": "IPY_MODEL_95bdf4d3b4cd4657b2e23ed69293f0f6",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "a0c903e5deda439a87088c29db72fae0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2c7a954cf980445bb68f2f3b4087d13d",
+ "placeholder": "",
+ "style": "IPY_MODEL_52c301745d1944d5ab76bada1f86bb0b",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "preprocessor_config.json: 100%"
+ }
+ },
+ "a48b57a8084e444790bae0f627db2ee3": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a5c854bd4bdf4338aa1b628307ae2017": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_379e6ba8b47c4b2a93e65d5d52d28334",
+ "IPY_MODEL_e42934b5071c46dcaaed7c634d9d66af",
+ "IPY_MODEL_0820c16a18dc4dffbc977b25d2c5fc8e"
+ ],
+ "layout": "IPY_MODEL_5859d44a00a6464e8868f4ae43e64f10",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "a97a0c3cab994d7da3a9f07b07f6fa6f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_f3e25414a47344aa864b0845f8a6542f",
+ "max": 17210088.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b6d9faa78a59443d90763309bbc6a68a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 17210088.0
+ }
+ },
+ "ab207bf69f35411b9b6d724b08a8ed06": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "ac3fba25c05349c4924f898abd9fe1a3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "acb4809eb9e94ef8a38326a4ddda5daa": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ad1d370ca05f49cc9b54391faf1ea95c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "afa97f5c274d4598872842c4c1ea9441": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_dae26b1ea47a49ffbb87e687aa911f41",
+ "IPY_MODEL_3f411d3545584dc99e1ee1674f5df014",
+ "IPY_MODEL_6f69ad80eb32491a880ac2e2e901d5b0"
+ ],
+ "layout": "IPY_MODEL_faf553db0dfa42b0bc2ae640687055cc",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "b02a7834fa9e4d529577c3197b5b580f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "b29756b1c20f4cd8ac5e35ec6f734c35": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "b38bc5300c294ec9ad0b9e6bcb19db93": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b5185f6e37074f1b8e71281a38540a80": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_0f9de914e704400fb064abbbd63f9f58",
+ "max": 210.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_87ac8f6efd9446a59aaf02063eaaaf95",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 210.0
+ }
+ },
+ "b567c613a8a64d05a2aee950bf5c4681": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "b57a4b1189494d7195a80e0836c6383f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b59892de04cc4607bfdf3a3d0ca75ae5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "b6d9faa78a59443d90763309bbc6a68a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "b76c9b3bf6c64607a5351a6c3faec7cd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_bc51339e14be43ceb407a82bbe3eb854",
+ "placeholder": "",
+ "style": "IPY_MODEL_78c25f7d3e8b44ffbaf720a816418572",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 5.15k/5.15k [00:00<00:00, 534kB/s]"
+ }
+ },
+ "b826bba5dc9b411c81462887ee0d7a89": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b94fe4a0c42549fd8511b1d1ae5cf9b2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "b96939ca0f78459ea74aec698217f2ab": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "danger",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_532bbf2866cb46c2b7851d736df8bb39",
+ "max": 264452697.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b94fe4a0c42549fd8511b1d1ae5cf9b2",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 264452672.0
+ }
+ },
+ "b9a5523e98234a33aed49d60d209ebaf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "bb30371beab94f39ad6ba91b91df85b1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "bc16e8efa6e9484193f8943b9b272dac": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_8b52cd2823c541f0ac8dfe18e276affc",
+ "placeholder": "",
+ "style": "IPY_MODEL_8ec3cf3f37ee4e7e914062b80f121891",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "generation_config.json: 100%"
+ }
+ },
+ "bc51339e14be43ceb407a82bbe3eb854": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bd3dc0e4de104c628ccf6ff0765009da": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "c2d239415e45484293736ac7c312fdb1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c2de0ebf93a54d90b89b5e51795370ae": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "c3866cfd8c3c442097d6e1440f9ea998": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_0414691402b34bb09690dece00175dce",
+ "max": 477.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_76b0e7d6026f427fbab532add8e0463d",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 477.0
+ }
+ },
+ "c3d3414095424e4398c96719ed2515df": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_5a287c52025042cf81adf0d7faabc728",
+ "placeholder": "",
+ "style": "IPY_MODEL_81b72cad4c184243b2ab48988d4a99c5",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 454/454 [00:00<00:00, 47.6kB/s]"
+ }
+ },
+ "c5b1f893937e4ec3b806e7639ddd2258": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c651491680e14ee5854146118ffd2d7b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ca516d3def8f409f9bb12ee6e198634a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "ca87f635c1dc4792bc53fa8c3f0983aa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d3e71382129b44b483ceb8ba0454899d",
+ "placeholder": "",
+ "style": "IPY_MODEL_22a6c1d20beb40878b8886bc3946f1df",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "tokenizer.json: 100%"
+ }
+ },
+ "ca9c89dccf614e8e9ac135cf416a021e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "cbde2bfd51214dc6b88f049830a8902c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4eee3eb8877c42d689fa9939242c8ba8",
+ "IPY_MODEL_0803b9262cd24f10a28b7ea8cb29630e",
+ "IPY_MODEL_2d02a58218d243118d893bd8c5939e1c"
+ ],
+ "layout": "IPY_MODEL_95b3cd0b73eb40a2a8f4bbab8e6063ee",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "d09f524cda174a3c86d922e0c22ee643": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d210f5956ebe410796e32d3938b54d3c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_53eff29522c1437685bd742978c0a48d",
+ "placeholder": "",
+ "style": "IPY_MODEL_e1767c417bb148cca37abd59256a44f1",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 477/477 [00:00<00:00, 47.2kB/s]"
+ }
+ },
+ "d3e71382129b44b483ceb8ba0454899d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d40cdd3be4d6456c86087df30922a308": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "d78b8654fd6a4563bc9414e61684fe94": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d921f13c1b6645cc9fa70a2fe54d2aec": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "d94e1575308940b1a18d560945f4fbf0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "dae26b1ea47a49ffbb87e687aa911f41": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_f8973b568a4244b183e3879b9dd41639",
+ "placeholder": "",
+ "style": "IPY_MODEL_d921f13c1b6645cc9fa70a2fe54d2aec",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "100%"
+ }
+ },
+ "dbbbe5b359c747d9aaa1a302ab15cc94": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "dbcc9ac164434778b72f1461ddc343b3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_dbbbe5b359c747d9aaa1a302ab15cc94",
+ "placeholder": "",
+ "style": "IPY_MODEL_7107fda6ab7c432f886563cce10e112e",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Generating train split: 100%"
+ }
+ },
+ "dd06a44197fd4d38adf7935d93a5588c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "ddc61c4616114e1a9ef5ca99ba1f4a4a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "e0ca28abccce438a8e12815457d8e602": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e1767c417bb148cca37abd59256a44f1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "e1e6f8123e6a4845bb53516a62febab5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e2b048d0feb3411580d8df4f2764e9da": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_23b8cb751df24d92bcf832e183be6c72",
+ "placeholder": "",
+ "style": "IPY_MODEL_351d9116b0d945ad89df4904bd6e3e82",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 55.9k/55.9k [00:00<00:00, 5.57MB/s]"
+ }
+ },
+ "e2e3ee93092943bd8aee18a0253c7013": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "e3044302cb2e43aeae8b2aa8ee9d0006": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_dbcc9ac164434778b72f1461ddc343b3",
+ "IPY_MODEL_7cdc8833cc9c41808fd07ed77bbb6929",
+ "IPY_MODEL_9565a235f57342999847c5c026bb6966"
+ ],
+ "layout": "IPY_MODEL_d94e1575308940b1a18d560945f4fbf0",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "e335c97b2a4a4e3495a4bd078f36ae6b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e420c533394f4fd2b5180a78b2b6face": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "e42934b5071c46dcaaed7c634d9d66af": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "danger",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2d76955164ef424c983553dfab36a027",
+ "max": 4971535505.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_24fa7efa8c104826a030fab1f2115aba",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 4971535031.0
+ }
+ },
+ "e50032cd57a9417892ea70e3fd0a9f5b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e9f325ecc44249e5a99aea4f44597f39",
+ "IPY_MODEL_1e0c78e62d3a4ac1bdd4e7d6f13f46b6",
+ "IPY_MODEL_38f4809829a545aea1377abac51d2212"
+ ],
+ "layout": "IPY_MODEL_e0ca28abccce438a8e12815457d8e602",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "e62a3a37ed7b4510a131ca96807ffc9c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e7248032eb334a6a84098aed8ade2b73": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e9f325ecc44249e5a99aea4f44597f39": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_908603559d3a48b18c395d24dcc27ddb",
+ "placeholder": "",
+ "style": "IPY_MODEL_ad1d370ca05f49cc9b54391faf1ea95c",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "model.safetensors.index.json: 100%"
+ }
+ },
+ "ea9e8f30af424475b6d3acadb77ba41c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ee08a77201584ac0bb19681674e555bb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "f00ff31a1ca74ea081d761f21e1bb3d8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_acb4809eb9e94ef8a38326a4ddda5daa",
+ "placeholder": "",
+ "style": "IPY_MODEL_dd06a44197fd4d38adf7935d93a5588c",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 544M/? [00:01<00:00, 211MB/s]"
+ }
+ },
+ "f1e29e45f035424e8bc32528330fd494": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f2a8d04702f3423ba5963371e4370dd3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_f78a6035318e48479bf5f0e099f4e97e",
+ "placeholder": "",
+ "style": "IPY_MODEL_b59892de04cc4607bfdf3a3d0ca75ae5",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 2.94G/2.94G [00:07<00:00, 545MB/s]"
+ }
+ },
+ "f2aee84317eb442783eb7f05164d8799": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2b4a16eebaac48799d30db59a0112ffb",
+ "placeholder": "",
+ "style": "IPY_MODEL_3aa04cb42ad040d69f1731589a547e95",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Loading checkpoint shards: 100%"
+ }
+ },
+ "f34567c896ee4b0d99dc6707fc5681e6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f3e25414a47344aa864b0845f8a6542f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f3fe89ea63ab4f85a3ffd6efa9bc138f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f6a7153bb8004e739d7a010796a6ec5c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f73b28abed114385b4e8eaf45bf8dfd2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a0c903e5deda439a87088c29db72fae0",
+ "IPY_MODEL_c3866cfd8c3c442097d6e1440f9ea998",
+ "IPY_MODEL_d210f5956ebe410796e32d3938b54d3c"
+ ],
+ "layout": "IPY_MODEL_17a2981140334d2596dc09a87298b756",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "f78a6035318e48479bf5f0e099f4e97e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f859a4074a944c5cbdea3b5344b893e7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f8973b568a4244b183e3879b9dd41639": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "faf553db0dfa42b0bc2ae640687055cc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ }
+ },
+ "version_major": 2,
+ "version_minor": 0
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/train_unsloth.ipynb b/train_unsloth.ipynb
deleted file mode 100644
index 1dae9a2..0000000
--- a/train_unsloth.ipynb
+++ /dev/null
@@ -1,15868 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "id": "0ff91594",
- "metadata": {
- "id": "IqM-T1RTzY6C",
- "papermill": {
- "duration": 0.022416,
- "end_time": "2024-11-19T19:01:59.936783",
- "exception": false,
- "start_time": "2024-11-19T19:01:59.914367",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n",
- "\n",
- " \n",
- " \n",
- " Join Discord if you need help + support us if you can!\n",
- " \n",
- "\n",
- "To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth#installation-instructions---conda).\n",
- "\n",
- "You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp)."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "9f31fd0e",
- "metadata": {
- "papermill": {
- "duration": 0.01882,
- "end_time": "2024-11-19T19:01:59.975791",
- "exception": false,
- "start_time": "2024-11-19T19:01:59.956971",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "## Kaggle is slow - you'll have to wait **5 minutes** for it to install.\n",
- "\n",
- "I suggest you to use our free Colab notebooks instead. I linked our Mistral Colab notebook here: [notebook](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "5da70b6b",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-19T19:02:00.014824Z",
- "iopub.status.busy": "2024-11-19T19:02:00.014491Z",
- "iopub.status.idle": "2024-11-19T19:06:21.486688Z",
- "shell.execute_reply": "2024-11-19T19:06:21.485746Z"
- },
- "papermill": {
- "duration": 261.495285,
- "end_time": "2024-11-19T19:06:21.489744",
- "exception": false,
- "start_time": "2024-11-19T19:01:59.994459",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Collecting pip3-autoremove\r\n",
- " Downloading pip3_autoremove-1.2.2-py2.py3-none-any.whl.metadata (2.2 kB)\r\n",
- "Requirement already satisfied: pip in /opt/conda/lib/python3.10/site-packages (from pip3-autoremove) (24.0)\r\n",
- "Requirement already satisfied: setuptools in /opt/conda/lib/python3.10/site-packages (from pip3-autoremove) (70.0.0)\r\n",
- "Downloading pip3_autoremove-1.2.2-py2.py3-none-any.whl (6.7 kB)\r\n",
- "Installing collected packages: pip3-autoremove\r\n",
- "Successfully installed pip3-autoremove-1.2.2\r\n",
- "dill 0.3.8 is installed but dill<0.3.2,>=0.3.1.1 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "cloudpickle 3.0.0 is installed but cloudpickle~=2.2.1 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "numpy 1.26.4 is installed but numpy<1.25.0,>=1.14.3 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "pyarrow 16.1.0 is installed but pyarrow<10.0.0,>=3.0.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "jupyterlab 4.2.5 is installed but jupyterlab~=3.6.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "google-cloud-bigquery 2.34.4 is installed but google-cloud-bigquery[bqstorage,pandas]>=3.10.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "google-cloud-storage 1.44.0 is installed but google-cloud-storage>=2.0.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "pandas 2.2.2 is installed but pandas<2.1.4,>=1.5.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "botocore 1.35.23 is installed but botocore<1.30.0,>=1.29.100 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "numpy 1.26.4 is installed but numpy<3.0,>=2.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "google-api-python-client 2.147.0 is installed but google-api-python-client==1.8.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "packaging 21.3 is installed but packaging>=23.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "The 'cubinlinker' distribution was not found and is required by the application\r\n",
- "Skipping cubinlinker\r\n",
- "cuda-python 12.6.0 is installed but cuda-python<12.0a0,>=11.7.1 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "The 'cupy-cuda11x>=12.0.0' distribution was not found and is required by the application\r\n",
- "Skipping cupy-cuda11x\r\n",
- "The 'ptxcompiler' distribution was not found and is required by the application\r\n",
- "Skipping ptxcompiler\r\n",
- "The 'cupy-cuda11x>=12.0.0' distribution was not found and is required by the application\r\n",
- "Skipping cupy-cuda11x\r\n",
- "The 'cupy-cuda11x>=12.0.0' distribution was not found and is required by the application\r\n",
- "Skipping cupy-cuda11x\r\n",
- "pydantic 2.9.2 is installed but pydantic~=1.10.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "dask 2024.9.1 is installed but dask==2024.7.1 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "The 'google.auth>=1.14.1' distribution was not found and is required by the application\r\n",
- "Skipping google.auth\r\n",
- "scipy 1.14.1 is installed but scipy<1.14.0,>=1.7.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "google-api-core 2.11.1 is installed but google-api-core[grpc]<2.0.0dev,>=1.22.2 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "google-api-core 2.11.1 is installed but google-api-core[grpc]<2.0.0dev,>=1.14.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "pyarrow 16.1.0 is installed but pyarrow<15,>=2 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "jupyter-lsp 1.5.1 is installed but jupyter-lsp>=2.0.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "jupyter-lsp 1.5.1 is installed but jupyter-lsp>=2.0.0 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "google-cloud-storage 1.44.0 is installed but google-cloud-storage<3,>=2.2.1 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "packaging 21.3 is installed but packaging>=22 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "Shapely 1.8.5.post1 is installed but shapely>=2.0.1 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "dill 0.3.8 is installed but dill>=0.3.9 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "multiprocess 0.70.16 is installed but multiprocess>=0.70.17 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "packaging 21.3 is installed but packaging>=23.2 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "dask 2024.9.1 is installed but dask==2024.7.1 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "cuda-python 12.6.0 is installed but cuda-python<12.0a0,>=11.7.1 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "nltk 3.2.4 is installed but nltk>=3.8 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "The 'libucx>=1.15.0' distribution was not found and is required by the application\r\n",
- "Skipping libucx\r\n",
- "packaging 21.3 is installed but packaging>=23.1 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "scipy 1.14.1 is installed but scipy<1.14,>=1.4.1 is required\r\n",
- "Redoing requirement with just package name...\r\n",
- "torch 2.4.0 (/opt/conda/lib/python3.10/site-packages)\r\n",
- " sympy 1.13.3 (/opt/conda/lib/python3.10/site-packages)\r\n",
- " mpmath 1.3.0 (/opt/conda/lib/python3.10/site-packages)\r\n",
- "torchvision 0.19.0 (/opt/conda/lib/python3.10/site-packages)\r\n",
- " torch 2.4.0 (/opt/conda/lib/python3.10/site-packages)\r\n",
- " sympy 1.13.3 (/opt/conda/lib/python3.10/site-packages)\r\n",
- " mpmath 1.3.0 (/opt/conda/lib/python3.10/site-packages)\r\n",
- "torchaudio 2.4.0 (/opt/conda/lib/python3.10/site-packages)\r\n",
- " torch 2.4.0 (/opt/conda/lib/python3.10/site-packages)\r\n",
- " sympy 1.13.3 (/opt/conda/lib/python3.10/site-packages)\r\n",
- " mpmath 1.3.0 (/opt/conda/lib/python3.10/site-packages)\r\n",
- "Found existing installation: sympy 1.13.3\r\n",
- "Uninstalling sympy-1.13.3:\r\n",
- " Successfully uninstalled sympy-1.13.3\r\n",
- "Found existing installation: torchvision 0.19.0\r\n",
- "Uninstalling torchvision-0.19.0:\r\n",
- " Successfully uninstalled torchvision-0.19.0\r\n",
- "Found existing installation: mpmath 1.3.0\r\n",
- "Uninstalling mpmath-1.3.0:\r\n",
- " Successfully uninstalled mpmath-1.3.0\r\n",
- "Found existing installation: torch 2.4.0\r\n",
- "Uninstalling torch-2.4.0:\r\n",
- " Successfully uninstalled torch-2.4.0\r\n",
- "Found existing installation: torchaudio 2.4.0\r\n",
- "Uninstalling torchaudio-2.4.0:\r\n",
- " Successfully uninstalled torchaudio-2.4.0\r\n",
- "Looking in indexes: https://download.pytorch.org/whl/cu121\r\n",
- "Collecting torch\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/torch-2.5.1%2Bcu121-cp310-cp310-linux_x86_64.whl (780.4 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m780.4/780.4 MB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting torchvision\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/torchvision-0.20.1%2Bcu121-cp310-cp310-linux_x86_64.whl (7.3 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.3/7.3 MB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting torchaudio\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/torchaudio-2.5.1%2Bcu121-cp310-cp310-linux_x86_64.whl (3.4 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m70.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting xformers\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/xformers-0.0.28.post3-cp310-cp310-manylinux_2_28_x86_64.whl (16.7 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.7/16.7 MB\u001b[0m \u001b[31m82.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hRequirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from torch) (3.15.1)\r\n",
- "Requirement already satisfied: typing-extensions>=4.8.0 in /opt/conda/lib/python3.10/site-packages (from torch) (4.12.2)\r\n",
- "Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch) (3.3)\r\n",
- "Requirement already satisfied: jinja2 in /opt/conda/lib/python3.10/site-packages (from torch) (3.1.4)\r\n",
- "Requirement already satisfied: fsspec in /opt/conda/lib/python3.10/site-packages (from torch) (2024.6.1)\r\n",
- "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m23.7/23.7 MB\u001b[0m \u001b[31m72.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m823.6/823.6 kB\u001b[0m \u001b[31m40.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.1/14.1 MB\u001b[0m \u001b[31m84.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cudnn-cu12==9.1.0.70 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cublas-cu12==12.1.3.1 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m410.6/410.6 MB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cufft-cu12==11.0.2.54 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m121.6/121.6 MB\u001b[0m \u001b[31m13.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-curand-cu12==10.3.2.106 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 MB\u001b[0m \u001b[31m29.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cusolver-cu12==11.4.5.107 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.2/124.2 MB\u001b[0m \u001b[31m13.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cusparse-cu12==12.1.0.106 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m196.0/196.0 MB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-nccl-cu12==2.21.5 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl (188.7 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m188.7/188.7 MB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-nvtx-cu12==12.1.105 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m99.1/99.1 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting triton==3.1.0 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/triton-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (209.5 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m209.5/209.5 MB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting sympy==1.13.1 (from torch)\r\n",
- " Downloading https://download.pytorch.org/whl/sympy-1.13.1-py3-none-any.whl (6.2 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.2/6.2 MB\u001b[0m \u001b[31m85.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_nvjitlink_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (19.8 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.8/19.8 MB\u001b[0m \u001b[31m72.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting mpmath<1.4,>=1.1.0 (from sympy==1.13.1->torch)\r\n",
- " Downloading https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.2/536.2 kB\u001b[0m \u001b[31m25.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hRequirement already satisfied: numpy in /opt/conda/lib/python3.10/site-packages (from torchvision) (1.26.4)\r\n",
- "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /opt/conda/lib/python3.10/site-packages (from torchvision) (10.3.0)\r\n",
- "Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2->torch) (2.1.5)\r\n",
- "Installing collected packages: mpmath, triton, sympy, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, torch, xformers, torchvision, torchaudio\r\n",
- "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n",
- "fastai 2.7.17 requires torch<2.5,>=1.10, but you have torch 2.5.1+cu121 which is incompatible.\u001b[0m\u001b[31m\r\n",
- "\u001b[0mSuccessfully installed mpmath-1.3.0 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.21.5 nvidia-nvjitlink-cu12-12.1.105 nvidia-nvtx-cu12-12.1.105 sympy-1.13.1 torch-2.5.1+cu121 torchaudio-2.5.1+cu121 torchvision-0.20.1+cu121 triton-3.1.0 xformers-0.0.28.post3\r\n",
- "Collecting unsloth[kaggle-new]\r\n",
- " Downloading unsloth-2024.11.7-py3-none-any.whl.metadata (59 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.7/59.7 kB\u001b[0m \u001b[31m1.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting unsloth-zoo>=2024.11.1 (from unsloth[kaggle-new])\r\n",
- " Downloading unsloth_zoo-2024.11.5-py3-none-any.whl.metadata (16 kB)\r\n",
- "Requirement already satisfied: torch>=2.4.0 in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (2.5.1+cu121)\r\n",
- "Requirement already satisfied: xformers>=0.0.27.post2 in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (0.0.28.post3)\r\n",
- "Collecting bitsandbytes (from unsloth[kaggle-new])\r\n",
- " Downloading bitsandbytes-0.44.1-py3-none-manylinux_2_24_x86_64.whl.metadata (3.5 kB)\r\n",
- "Requirement already satisfied: triton>=3.0.0 in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (3.1.0)\r\n",
- "Requirement already satisfied: packaging in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (21.3)\r\n",
- "Collecting tyro (from unsloth[kaggle-new])\r\n",
- " Downloading tyro-0.9.1-py3-none-any.whl.metadata (9.3 kB)\r\n",
- "Collecting transformers>=4.46.1 (from unsloth[kaggle-new])\r\n",
- " Downloading transformers-4.46.3-py3-none-any.whl.metadata (44 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.1/44.1 kB\u001b[0m \u001b[31m2.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hRequirement already satisfied: datasets>=2.16.0 in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (3.0.1)\r\n",
- "Requirement already satisfied: sentencepiece>=0.2.0 in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (0.2.0)\r\n",
- "Requirement already satisfied: tqdm in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (4.66.4)\r\n",
- "Requirement already satisfied: psutil in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (5.9.3)\r\n",
- "Requirement already satisfied: wheel>=0.42.0 in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (0.43.0)\r\n",
- "Requirement already satisfied: numpy in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (1.26.4)\r\n",
- "Requirement already satisfied: accelerate>=0.34.1 in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (0.34.2)\r\n",
- "Collecting trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9 (from unsloth[kaggle-new])\r\n",
- " Downloading trl-0.12.1-py3-none-any.whl.metadata (10 kB)\r\n",
- "Collecting peft!=0.11.0,>=0.7.1 (from unsloth[kaggle-new])\r\n",
- " Downloading peft-0.13.2-py3-none-any.whl.metadata (13 kB)\r\n",
- "Requirement already satisfied: protobuf<4.0.0 in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (3.20.3)\r\n",
- "Requirement already satisfied: huggingface-hub in /opt/conda/lib/python3.10/site-packages (from unsloth[kaggle-new]) (0.25.1)\r\n",
- "Collecting hf-transfer (from unsloth[kaggle-new])\r\n",
- " Downloading hf_transfer-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.7 kB)\r\n",
- "Requirement already satisfied: pyyaml in /opt/conda/lib/python3.10/site-packages (from accelerate>=0.34.1->unsloth[kaggle-new]) (6.0.2)\r\n",
- "Requirement already satisfied: safetensors>=0.4.3 in /opt/conda/lib/python3.10/site-packages (from accelerate>=0.34.1->unsloth[kaggle-new]) (0.4.5)\r\n",
- "Requirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth[kaggle-new]) (3.15.1)\r\n",
- "Requirement already satisfied: pyarrow>=15.0.0 in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth[kaggle-new]) (16.1.0)\r\n",
- "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth[kaggle-new]) (0.3.8)\r\n",
- "Requirement already satisfied: pandas in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth[kaggle-new]) (2.2.2)\r\n",
- "Requirement already satisfied: requests>=2.32.2 in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth[kaggle-new]) (2.32.3)\r\n",
- "Requirement already satisfied: xxhash in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth[kaggle-new]) (3.4.1)\r\n",
- "Requirement already satisfied: multiprocess in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth[kaggle-new]) (0.70.16)\r\n",
- "Requirement already satisfied: fsspec<=2024.6.1,>=2023.1.0 in /opt/conda/lib/python3.10/site-packages (from fsspec[http]<=2024.6.1,>=2023.1.0->datasets>=2.16.0->unsloth[kaggle-new]) (2024.6.1)\r\n",
- "Requirement already satisfied: aiohttp in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth[kaggle-new]) (3.9.5)\r\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub->unsloth[kaggle-new]) (4.12.2)\r\n",
- "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.10/site-packages (from packaging->unsloth[kaggle-new]) (3.1.2)\r\n",
- "Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (3.3)\r\n",
- "Requirement already satisfied: jinja2 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (3.1.4)\r\n",
- "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (12.1.105)\r\n",
- "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (12.1.105)\r\n",
- "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (12.1.105)\r\n",
- "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (9.1.0.70)\r\n",
- "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (12.1.3.1)\r\n",
- "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (11.0.2.54)\r\n",
- "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (10.3.2.106)\r\n",
- "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (11.4.5.107)\r\n",
- "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (12.1.0.106)\r\n",
- "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (2.21.5)\r\n",
- "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (12.1.105)\r\n",
- "Requirement already satisfied: sympy==1.13.1 in /opt/conda/lib/python3.10/site-packages (from torch>=2.4.0->unsloth[kaggle-new]) (1.13.1)\r\n",
- "Requirement already satisfied: nvidia-nvjitlink-cu12 in /opt/conda/lib/python3.10/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=2.4.0->unsloth[kaggle-new]) (12.1.105)\r\n",
- "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/conda/lib/python3.10/site-packages (from sympy==1.13.1->torch>=2.4.0->unsloth[kaggle-new]) (1.3.0)\r\n",
- "Requirement already satisfied: regex!=2019.12.17 in /opt/conda/lib/python3.10/site-packages (from transformers>=4.46.1->unsloth[kaggle-new]) (2024.5.15)\r\n",
- "Requirement already satisfied: tokenizers<0.21,>=0.20 in /opt/conda/lib/python3.10/site-packages (from transformers>=4.46.1->unsloth[kaggle-new]) (0.20.0)\r\n",
- "Requirement already satisfied: rich in /opt/conda/lib/python3.10/site-packages (from trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth[kaggle-new]) (13.7.1)\r\n",
- "Requirement already satisfied: docstring-parser>=0.16 in /opt/conda/lib/python3.10/site-packages (from tyro->unsloth[kaggle-new]) (0.16)\r\n",
- "Collecting shtab>=1.5.6 (from tyro->unsloth[kaggle-new])\r\n",
- " Downloading shtab-1.7.1-py3-none-any.whl.metadata (7.3 kB)\r\n",
- "Requirement already satisfied: aiosignal>=1.1.2 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.16.0->unsloth[kaggle-new]) (1.3.1)\r\n",
- "Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.16.0->unsloth[kaggle-new]) (23.2.0)\r\n",
- "Requirement already satisfied: frozenlist>=1.1.1 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.16.0->unsloth[kaggle-new]) (1.4.1)\r\n",
- "Requirement already satisfied: multidict<7.0,>=4.5 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.16.0->unsloth[kaggle-new]) (6.0.5)\r\n",
- "Requirement already satisfied: yarl<2.0,>=1.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.16.0->unsloth[kaggle-new]) (1.9.4)\r\n",
- "Requirement already satisfied: async-timeout<5.0,>=4.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.16.0->unsloth[kaggle-new]) (4.0.3)\r\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth[kaggle-new]) (3.3.2)\r\n",
- "Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth[kaggle-new]) (3.7)\r\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth[kaggle-new]) (1.26.18)\r\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth[kaggle-new]) (2024.8.30)\r\n",
- "Requirement already satisfied: markdown-it-py>=2.2.0 in /opt/conda/lib/python3.10/site-packages (from rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth[kaggle-new]) (3.0.0)\r\n",
- "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /opt/conda/lib/python3.10/site-packages (from rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth[kaggle-new]) (2.18.0)\r\n",
- "Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2->torch>=2.4.0->unsloth[kaggle-new]) (2.1.5)\r\n",
- "Requirement already satisfied: python-dateutil>=2.8.2 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets>=2.16.0->unsloth[kaggle-new]) (2.9.0.post0)\r\n",
- "Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets>=2.16.0->unsloth[kaggle-new]) (2024.1)\r\n",
- "Requirement already satisfied: tzdata>=2022.7 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets>=2.16.0->unsloth[kaggle-new]) (2024.1)\r\n",
- "Requirement already satisfied: mdurl~=0.1 in /opt/conda/lib/python3.10/site-packages (from markdown-it-py>=2.2.0->rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth[kaggle-new]) (0.1.2)\r\n",
- "Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.10/site-packages (from python-dateutil>=2.8.2->pandas->datasets>=2.16.0->unsloth[kaggle-new]) (1.16.0)\r\n",
- "Downloading bitsandbytes-0.44.1-py3-none-manylinux_2_24_x86_64.whl (122.4 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m122.4/122.4 MB\u001b[0m \u001b[31m14.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading peft-0.13.2-py3-none-any.whl (320 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m320.7/320.7 kB\u001b[0m \u001b[31m17.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading transformers-4.46.3-py3-none-any.whl (10.0 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m98.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading trl-0.12.1-py3-none-any.whl (310 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m310.9/310.9 kB\u001b[0m \u001b[31m16.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading unsloth_zoo-2024.11.5-py3-none-any.whl (31 kB)\r\n",
- "Downloading hf_transfer-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m82.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading tyro-0.9.1-py3-none-any.whl (111 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m111.9/111.9 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading unsloth-2024.11.7-py3-none-any.whl (163 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m163.9/163.9 kB\u001b[0m \u001b[31m9.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading shtab-1.7.1-py3-none-any.whl (14 kB)\r\n",
- "Installing collected packages: shtab, hf-transfer, tyro, transformers, bitsandbytes, trl, peft, unsloth-zoo, unsloth\r\n",
- " Attempting uninstall: transformers\r\n",
- " Found existing installation: transformers 4.45.1\r\n",
- " Uninstalling transformers-4.45.1:\r\n",
- " Successfully uninstalled transformers-4.45.1\r\n",
- "Successfully installed bitsandbytes-0.44.1 hf-transfer-0.1.8 peft-0.13.2 shtab-1.7.1 transformers-4.46.3 trl-0.12.1 tyro-0.9.1 unsloth-2024.11.7 unsloth-zoo-2024.11.5\r\n",
- "Found existing installation: unsloth 2024.11.7\r\n",
- "Uninstalling unsloth-2024.11.7:\r\n",
- " Successfully uninstalled unsloth-2024.11.7\r\n",
- "Collecting git+https://github.com/unslothai/unsloth.git@a2f8db3e7341f983af5814a2c56f54fa29ee548d\r\n",
- " Cloning https://github.com/unslothai/unsloth.git (to revision a2f8db3e7341f983af5814a2c56f54fa29ee548d) to /tmp/pip-req-build-7w3hakz0\r\n",
- " Running command git clone --filter=blob:none --quiet https://github.com/unslothai/unsloth.git /tmp/pip-req-build-7w3hakz0\r\n",
- " Running command git rev-parse -q --verify 'sha^a2f8db3e7341f983af5814a2c56f54fa29ee548d'\r\n",
- " Running command git fetch -q https://github.com/unslothai/unsloth.git a2f8db3e7341f983af5814a2c56f54fa29ee548d\r\n",
- " Running command git checkout -q a2f8db3e7341f983af5814a2c56f54fa29ee548d\r\n",
- " Resolved https://github.com/unslothai/unsloth.git to commit a2f8db3e7341f983af5814a2c56f54fa29ee548d\r\n",
- " Installing build dependencies ... \u001b[?25l-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \bdone\r\n",
- "\u001b[?25h Getting requirements to build wheel ... \u001b[?25l-\b \bdone\r\n",
- "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25l-\b \bdone\r\n",
- "\u001b[?25hBuilding wheels for collected packages: unsloth\r\n",
- " Building wheel for unsloth (pyproject.toml) ... \u001b[?25l-\b \b\\\b \bdone\r\n",
- "\u001b[?25h Created wheel for unsloth: filename=unsloth-2024.10.7-py3-none-any.whl size=164376 sha256=318d24041afad463f487f3927388d766e913ffa5b694f3e2e3b1a7851fa67a1c\r\n",
- " Stored in directory: /root/.cache/pip/wheels/d5/c3/0d/98b9068092121456c620edb0a24e05fda5934229b776b63a7b\r\n",
- "Successfully built unsloth\r\n",
- "Installing collected packages: unsloth\r\n",
- "Successfully installed unsloth-2024.10.7\r\n"
- ]
- }
- ],
- "source": [
- "#%%capture\n",
- "!pip install pip3-autoremove\n",
- "!pip-autoremove torch torchvision torchaudio -y\n",
- "!pip install torch torchvision torchaudio xformers --index-url https://download.pytorch.org/whl/cu121\n",
- "# https://github.com/unslothai/unsloth/issues/1284\n",
- "!pip install unsloth[kaggle-new]\n",
- "# Also get the latest nightly Unsloth!\n",
- "!pip uninstall unsloth -y && pip install git+https://github.com/unslothai/unsloth.git@a2f8db3e7341f983af5814a2c56f54fa29ee548d"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "6018b225",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-19T19:06:21.619747Z",
- "iopub.status.busy": "2024-11-19T19:06:21.618961Z",
- "iopub.status.idle": "2024-11-19T19:06:41.479598Z",
- "shell.execute_reply": "2024-11-19T19:06:41.478738Z"
- },
- "papermill": {
- "duration": 19.925903,
- "end_time": "2024-11-19T19:06:41.482153",
- "exception": false,
- "start_time": "2024-11-19T19:06:21.556250",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Collecting git+https://github.com/unslothai/unsloth-zoo.git\r\n",
- " Cloning https://github.com/unslothai/unsloth-zoo.git to /tmp/pip-req-build-0xpxksif\r\n",
- " Running command git clone --filter=blob:none --quiet https://github.com/unslothai/unsloth-zoo.git /tmp/pip-req-build-0xpxksif\r\n",
- " Resolved https://github.com/unslothai/unsloth-zoo.git to commit f5421838ef8278cf96d0092d8271ecd6d433588c\r\n",
- " Installing build dependencies ... \u001b[?25l-\b \b\\\b \b|\b \b/\b \bdone\r\n",
- "\u001b[?25h Getting requirements to build wheel ... \u001b[?25l-\b \bdone\r\n",
- "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25l-\b \bdone\r\n",
- "\u001b[?25hRequirement already satisfied: torch in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (2.5.1+cu121)\r\n",
- "Requirement already satisfied: triton in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (3.1.0)\r\n",
- "Requirement already satisfied: packaging in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (21.3)\r\n",
- "Requirement already satisfied: tyro in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (0.9.1)\r\n",
- "Requirement already satisfied: transformers>=4.46.1 in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (4.46.3)\r\n",
- "Requirement already satisfied: datasets>=2.16.0 in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (3.0.1)\r\n",
- "Requirement already satisfied: sentencepiece>=0.2.0 in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (0.2.0)\r\n",
- "Requirement already satisfied: tqdm in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (4.66.4)\r\n",
- "Requirement already satisfied: psutil in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (5.9.3)\r\n",
- "Requirement already satisfied: wheel>=0.42.0 in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (0.43.0)\r\n",
- "Requirement already satisfied: numpy in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (1.26.4)\r\n",
- "Requirement already satisfied: accelerate>=0.34.1 in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (0.34.2)\r\n",
- "Requirement already satisfied: trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9 in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (0.12.1)\r\n",
- "Requirement already satisfied: peft!=0.11.0,>=0.7.1 in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (0.13.2)\r\n",
- "Requirement already satisfied: protobuf<4.0.0 in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (3.20.3)\r\n",
- "Requirement already satisfied: huggingface-hub in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (0.25.1)\r\n",
- "Requirement already satisfied: hf-transfer in /opt/conda/lib/python3.10/site-packages (from unsloth_zoo==2024.11.5) (0.1.8)\r\n",
- "Requirement already satisfied: pyyaml in /opt/conda/lib/python3.10/site-packages (from accelerate>=0.34.1->unsloth_zoo==2024.11.5) (6.0.2)\r\n",
- "Requirement already satisfied: safetensors>=0.4.3 in /opt/conda/lib/python3.10/site-packages (from accelerate>=0.34.1->unsloth_zoo==2024.11.5) (0.4.5)\r\n",
- "Requirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth_zoo==2024.11.5) (3.15.1)\r\n",
- "Requirement already satisfied: pyarrow>=15.0.0 in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth_zoo==2024.11.5) (16.1.0)\r\n",
- "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth_zoo==2024.11.5) (0.3.8)\r\n",
- "Requirement already satisfied: pandas in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth_zoo==2024.11.5) (2.2.2)\r\n",
- "Requirement already satisfied: requests>=2.32.2 in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth_zoo==2024.11.5) (2.32.3)\r\n",
- "Requirement already satisfied: xxhash in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth_zoo==2024.11.5) (3.4.1)\r\n",
- "Requirement already satisfied: multiprocess in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth_zoo==2024.11.5) (0.70.16)\r\n",
- "Requirement already satisfied: fsspec<=2024.6.1,>=2023.1.0 in /opt/conda/lib/python3.10/site-packages (from fsspec[http]<=2024.6.1,>=2023.1.0->datasets>=2.16.0->unsloth_zoo==2024.11.5) (2024.6.1)\r\n",
- "Requirement already satisfied: aiohttp in /opt/conda/lib/python3.10/site-packages (from datasets>=2.16.0->unsloth_zoo==2024.11.5) (3.9.5)\r\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub->unsloth_zoo==2024.11.5) (4.12.2)\r\n",
- "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.10/site-packages (from packaging->unsloth_zoo==2024.11.5) (3.1.2)\r\n",
- "Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (3.3)\r\n",
- "Requirement already satisfied: jinja2 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (3.1.4)\r\n",
- "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (12.1.105)\r\n",
- "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (12.1.105)\r\n",
- "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (12.1.105)\r\n",
- "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (9.1.0.70)\r\n",
- "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (12.1.3.1)\r\n",
- "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (11.0.2.54)\r\n",
- "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (10.3.2.106)\r\n",
- "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (11.4.5.107)\r\n",
- "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (12.1.0.106)\r\n",
- "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (2.21.5)\r\n",
- "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (12.1.105)\r\n",
- "Requirement already satisfied: sympy==1.13.1 in /opt/conda/lib/python3.10/site-packages (from torch->unsloth_zoo==2024.11.5) (1.13.1)\r\n",
- "Requirement already satisfied: nvidia-nvjitlink-cu12 in /opt/conda/lib/python3.10/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch->unsloth_zoo==2024.11.5) (12.1.105)\r\n",
- "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/conda/lib/python3.10/site-packages (from sympy==1.13.1->torch->unsloth_zoo==2024.11.5) (1.3.0)\r\n",
- "Requirement already satisfied: regex!=2019.12.17 in /opt/conda/lib/python3.10/site-packages (from transformers>=4.46.1->unsloth_zoo==2024.11.5) (2024.5.15)\r\n",
- "Requirement already satisfied: tokenizers<0.21,>=0.20 in /opt/conda/lib/python3.10/site-packages (from transformers>=4.46.1->unsloth_zoo==2024.11.5) (0.20.0)\r\n",
- "Requirement already satisfied: rich in /opt/conda/lib/python3.10/site-packages (from trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth_zoo==2024.11.5) (13.7.1)\r\n",
- "Requirement already satisfied: docstring-parser>=0.16 in /opt/conda/lib/python3.10/site-packages (from tyro->unsloth_zoo==2024.11.5) (0.16)\r\n",
- "Requirement already satisfied: shtab>=1.5.6 in /opt/conda/lib/python3.10/site-packages (from tyro->unsloth_zoo==2024.11.5) (1.7.1)\r\n",
- "Requirement already satisfied: aiosignal>=1.1.2 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.16.0->unsloth_zoo==2024.11.5) (1.3.1)\r\n",
- "Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.16.0->unsloth_zoo==2024.11.5) (23.2.0)\r\n",
- "Requirement already satisfied: frozenlist>=1.1.1 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.16.0->unsloth_zoo==2024.11.5) (1.4.1)\r\n",
- "Requirement already satisfied: multidict<7.0,>=4.5 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.16.0->unsloth_zoo==2024.11.5) (6.0.5)\r\n",
- "Requirement already satisfied: yarl<2.0,>=1.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.16.0->unsloth_zoo==2024.11.5) (1.9.4)\r\n",
- "Requirement already satisfied: async-timeout<5.0,>=4.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets>=2.16.0->unsloth_zoo==2024.11.5) (4.0.3)\r\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth_zoo==2024.11.5) (3.3.2)\r\n",
- "Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth_zoo==2024.11.5) (3.7)\r\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth_zoo==2024.11.5) (1.26.18)\r\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth_zoo==2024.11.5) (2024.8.30)\r\n",
- "Requirement already satisfied: markdown-it-py>=2.2.0 in /opt/conda/lib/python3.10/site-packages (from rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth_zoo==2024.11.5) (3.0.0)\r\n",
- "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /opt/conda/lib/python3.10/site-packages (from rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth_zoo==2024.11.5) (2.18.0)\r\n",
- "Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2->torch->unsloth_zoo==2024.11.5) (2.1.5)\r\n",
- "Requirement already satisfied: python-dateutil>=2.8.2 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets>=2.16.0->unsloth_zoo==2024.11.5) (2.9.0.post0)\r\n",
- "Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets>=2.16.0->unsloth_zoo==2024.11.5) (2024.1)\r\n",
- "Requirement already satisfied: tzdata>=2022.7 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets>=2.16.0->unsloth_zoo==2024.11.5) (2024.1)\r\n",
- "Requirement already satisfied: mdurl~=0.1 in /opt/conda/lib/python3.10/site-packages (from markdown-it-py>=2.2.0->rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth_zoo==2024.11.5) (0.1.2)\r\n",
- "Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.10/site-packages (from python-dateutil>=2.8.2->pandas->datasets>=2.16.0->unsloth_zoo==2024.11.5) (1.16.0)\r\n"
- ]
- }
- ],
- "source": [
- "!pip install git+https://github.com/unslothai/unsloth-zoo.git\n",
- "import os\n",
- "os.environ[\"UNSLOTH_IS_PRESENT\"] = \"1\""
- ]
- },
- {
- "cell_type": "markdown",
- "id": "6c8091fe",
- "metadata": {
- "id": "r2v_X2fA0Df5",
- "papermill": {
- "duration": 0.064606,
- "end_time": "2024-11-19T19:06:41.612002",
- "exception": false,
- "start_time": "2024-11-19T19:06:41.547396",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "* We support Llama, Mistral, CodeLlama, TinyLlama, Vicuna, Open Hermes etc\n",
- "* And Yi, Qwen ([llamafied](https://huggingface.co/models?sort=trending&search=qwen+llama)), Deepseek, all Llama, Mistral derived archs.\n",
- "* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n",
- "* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n",
- "* [**NEW**] With [PR 26037](https://github.com/huggingface/transformers/pull/26037), we support downloading 4bit models **4x faster**! [Our repo](https://huggingface.co/unsloth) has Llama, Mistral 4bit models."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "c7d55dc3",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-19T19:06:41.737888Z",
- "iopub.status.busy": "2024-11-19T19:06:41.737538Z",
- "iopub.status.idle": "2024-11-19T19:08:58.672000Z",
- "shell.execute_reply": "2024-11-19T19:08:58.671103Z"
- },
- "id": "QmUBVEnvCDJv",
- "outputId": "5eff0d61-05b4-471c-eea2-c2e84a915109",
- "papermill": {
- "duration": 136.999725,
- "end_time": "2024-11-19T19:08:58.674026",
- "exception": false,
- "start_time": "2024-11-19T19:06:41.674301",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.\n",
- "🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.\n",
- "==((====))== Unsloth 2024.10.7: Fast Llama patching. Transformers = 4.46.3.\n",
- " \\\\ /| GPU: Tesla T4. Max memory: 14.741 GB. Platform = Linux.\n",
- "O^O/ \\_/ \\ Pytorch: 2.5.1+cu121. CUDA = 7.5. CUDA Toolkit = 12.1.\n",
- "\\ / Bfloat16 = FALSE. FA [Xformers = 0.0.28.post3. FA2 = False]\n",
- " \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n",
- "Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "52307514a7d14c388004fc8ae3e7378e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "model.safetensors.index.json: 0%| | 0.00/23.9k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "97c2f928e86f4374baa0f502ca5707e3",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading shards: 0%| | 0/4 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "80a88015f8374bbd930529c4b9722389",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "model-00001-of-00004.safetensors: 0%| | 0.00/4.98G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6d34a8cb6dd44a51a5ede4509989bb91",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "model-00002-of-00004.safetensors: 0%| | 0.00/5.00G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a953aa1afe6147e4896888080c1373ba",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "model-00003-of-00004.safetensors: 0%| | 0.00/4.92G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "679dfe3d327a41b2b518d55652625780",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "model-00004-of-00004.safetensors: 0%| | 0.00/1.17G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0b05cd87aeb141dd92f3756b79bf23e8",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Loading checkpoint shards: 0%| | 0/4 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5412bb916c244149a7232f7cf8934dce",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "generation_config.json: 0%| | 0.00/194 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "e098d9b8d2124e30bd94fbc6e9161ad2",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "tokenizer_config.json: 0%| | 0.00/50.9k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8b9186a0443742c2ba93ae286db9885e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "tokenizer.json: 0%| | 0.00/9.09M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a81d251b9e494da1b759157f695e8d47",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "special_tokens_map.json: 0%| | 0.00/296 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Unsloth: We successfully patched the tokenizer to add a {% if add_generation_prompt %} to the chat_template.\n",
- "This is not a bug, but please notify the Unsloth maintainers - thanks!\n",
- "mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated does not have a padding token! Will use pad_token = <|finetune_right_pad_id|>.\n"
- ]
- }
- ],
- "source": [
- "from unsloth import FastLanguageModel\n",
- "import torch\n",
- "max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n",
- "dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n",
- "load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.\n",
- "\n",
- "# 4bit pre quantized models we support for 4x faster downloading + no OOMs.\n",
- "fourbit_models = [\n",
- " \"unsloth/mistral-7b-bnb-4bit\",\n",
- " \"unsloth/mistral-7b-instruct-v0.2-bnb-4bit\",\n",
- " \"unsloth/llama-2-7b-bnb-4bit\",\n",
- " \"unsloth/llama-2-13b-bnb-4bit\",\n",
- " \"unsloth/codellama-34b-bnb-4bit\",\n",
- " \"unsloth/tinyllama-bnb-4bit\",\n",
- " \"unsloth/llama-3-8b-bnb-4bit\",\n",
- " \"unsloth/llama-3-70b-bnb-4bit\",\n",
- "] # More models at https://huggingface.co/unsloth\n",
- "\n",
- "model, tokenizer = FastLanguageModel.from_pretrained(\n",
- " model_name = \"mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated\", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B\n",
- " max_seq_length = max_seq_length,\n",
- " dtype = dtype,\n",
- " load_in_4bit = load_in_4bit,\n",
- " # token = \"hf_...\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2775c72b",
- "metadata": {
- "id": "SXd9bTZd1aaL",
- "papermill": {
- "duration": 0.072004,
- "end_time": "2024-11-19T19:08:58.812761",
- "exception": false,
- "start_time": "2024-11-19T19:08:58.740757",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "We now add LoRA adapters so we only need to update 1 to 10% of all parameters!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "d4d1a72a",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-19T19:08:58.951114Z",
- "iopub.status.busy": "2024-11-19T19:08:58.950567Z",
- "iopub.status.idle": "2024-11-19T19:09:04.490905Z",
- "shell.execute_reply": "2024-11-19T19:09:04.490238Z"
- },
- "id": "6bZsfBuZDeCL",
- "outputId": "b630cc80-ff95-45a2-cc0d-38666010d73b",
- "papermill": {
- "duration": 5.61606,
- "end_time": "2024-11-19T19:09:04.492928",
- "exception": false,
- "start_time": "2024-11-19T19:08:58.876868",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Unsloth 2024.10.7 patched 32 layers with 32 QKV layers, 32 O layers and 32 MLP layers.\n"
- ]
- }
- ],
- "source": [
- "model = FastLanguageModel.get_peft_model(\n",
- " model,\n",
- " r = 32, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n",
- " target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n",
- " \"gate_proj\", \"up_proj\", \"down_proj\",],\n",
- " lora_alpha = 16,\n",
- " lora_dropout = 0, # Supports any, but = 0 is optimized\n",
- " bias = \"none\", # Supports any, but = \"none\" is optimized\n",
- " use_gradient_checkpointing = \"unsloth\", # 4x longer contexts auto supported!\n",
- " random_state = 3407,\n",
- " use_rslora = False, # We support rank stabilized LoRA\n",
- " loftq_config = None, # And LoftQ\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "cca764a5",
- "metadata": {
- "id": "vITh0KVJ10qX",
- "papermill": {
- "duration": 0.063926,
- "end_time": "2024-11-19T19:09:04.622692",
- "exception": false,
- "start_time": "2024-11-19T19:09:04.558766",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "\n",
- "### Data Prep\n",
- "We now use the Alpaca dataset from [yahma](https://huggingface.co/datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep.\n",
- "\n",
- "**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n",
- "\n",
- "**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!\n",
- "\n",
- "If you want to use the `ChatML` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing).\n",
- "\n",
- "For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "69a832a3",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-19T19:09:04.754265Z",
- "iopub.status.busy": "2024-11-19T19:09:04.753481Z",
- "iopub.status.idle": "2024-11-19T19:09:06.180842Z",
- "shell.execute_reply": "2024-11-19T19:09:06.180121Z"
- },
- "id": "LjY75GoYUCB8",
- "outputId": "9f40f734-788c-4793-c1af-e9d003337612",
- "papermill": {
- "duration": 1.495636,
- "end_time": "2024-11-19T19:09:06.182870",
- "exception": false,
- "start_time": "2024-11-19T19:09:04.687234",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "from datasets import load_dataset\n",
- "import json\n",
- "from unsloth.chat_templates import get_chat_template\n",
- "\n",
- "tokenizer = get_chat_template(\n",
- " tokenizer,\n",
- " chat_template = \"llama-3\", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth\n",
- " #mapping = {\"role\" : \"from\", \"content\" : \"value\", \"user\" : \"human\", \"assistant\" : \"gpt\"}, # ShareGPT style\n",
- " map_eos_token = True, # Maps <|im_end|> to instead\n",
- ")\n",
- "\n",
- "def formatting_prompts_func(convos):\n",
- " texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]\n",
- " return { \"text\" : texts, }\n",
- "\n",
- "with open(\"/kaggle/input/the-group-chat/output-10k-c-dropout-nonames-replies.json\") as chatfile:\n",
- " convos = [json.loads(j) for j in chatfile.readlines()]\n",
- "\n",
- "with open(\"/kaggle/input/toxicqa/toxicQAfinal.json\") as chatfile:\n",
- " convos += [json.loads(j) for j in chatfile.readlines()]\n",
- " \n",
- "dataset = formatting_prompts_func(convos)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "6b4a347d",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-19T19:09:06.314334Z",
- "iopub.status.busy": "2024-11-19T19:09:06.313377Z",
- "iopub.status.idle": "2024-11-19T19:09:06.739552Z",
- "shell.execute_reply": "2024-11-19T19:09:06.738597Z"
- },
- "papermill": {
- "duration": 0.493416,
- "end_time": "2024-11-19T19:09:06.741610",
- "exception": false,
- "start_time": "2024-11-19T19:09:06.248194",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "from datasets import Dataset\n",
- "dataset = Dataset.from_dict(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "4c45849c",
- "metadata": {
- "id": "idAEIeSQ3xdS",
- "papermill": {
- "duration": 0.064215,
- "end_time": "2024-11-19T19:09:06.871810",
- "exception": false,
- "start_time": "2024-11-19T19:09:06.807595",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "\n",
- "### Train the model\n",
- "Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "7bbc400a",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-19T19:09:07.001740Z",
- "iopub.status.busy": "2024-11-19T19:09:07.000573Z",
- "iopub.status.idle": "2024-11-19T19:09:24.425284Z",
- "shell.execute_reply": "2024-11-19T19:09:24.424466Z"
- },
- "id": "95_Nn-89DhsL",
- "outputId": "4b809e6d-271f-446f-dec8-abe0d13259f8",
- "papermill": {
- "duration": 17.491445,
- "end_time": "2024-11-19T19:09:24.427211",
- "exception": false,
- "start_time": "2024-11-19T19:09:06.935766",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0f0c38ccb6c0402f84a66639ce3b0a2c",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Map (num_proc=2): 0%| | 0/17983 [00:00, ? examples/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "from trl import SFTTrainer\n",
- "from transformers import TrainingArguments\n",
- "\n",
- "trainer = SFTTrainer(\n",
- " model = model,\n",
- " tokenizer = tokenizer,\n",
- " train_dataset = dataset,\n",
- " dataset_text_field = \"text\",\n",
- " max_seq_length = max_seq_length,\n",
- " dataset_num_proc = 2,\n",
- " packing = False, # Can make training 5x faster for short sequences.\n",
- " args = TrainingArguments(\n",
- " per_device_train_batch_size = 2,\n",
- " gradient_accumulation_steps = 4,\n",
- " warmup_steps = 5,\n",
- " num_train_epochs=1,\n",
- " learning_rate = 2e-4,\n",
- " fp16 = not torch.cuda.is_bf16_supported(),\n",
- " bf16 = torch.cuda.is_bf16_supported(),\n",
- " logging_steps = 1,\n",
- " optim = \"adamw_8bit\",\n",
- " weight_decay = 0.01,\n",
- " lr_scheduler_type = \"linear\",\n",
- " seed = 3407,\n",
- " output_dir = \"outputs\",\n",
- " report_to = \"none\",\n",
- " ),\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "5f90acfb",
- "metadata": {
- "cellView": "form",
- "execution": {
- "iopub.execute_input": "2024-11-19T19:09:24.559813Z",
- "iopub.status.busy": "2024-11-19T19:09:24.558971Z",
- "iopub.status.idle": "2024-11-19T19:09:24.564859Z",
- "shell.execute_reply": "2024-11-19T19:09:24.564110Z"
- },
- "id": "2ejIt2xSNKKp",
- "outputId": "4815a050-0c0f-4a6a-9d93-b01c44eaea35",
- "papermill": {
- "duration": 0.072966,
- "end_time": "2024-11-19T19:09:24.566638",
- "exception": false,
- "start_time": "2024-11-19T19:09:24.493672",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "GPU = Tesla T4. Max memory = 14.741 GB.\n",
- "6.172 GB of memory reserved.\n"
- ]
- }
- ],
- "source": [
- "#@title Show current memory stats\n",
- "gpu_stats = torch.cuda.get_device_properties(0)\n",
- "start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
- "max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n",
- "print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n",
- "print(f\"{start_gpu_memory} GB of memory reserved.\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "1a3a38b4",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-19T19:09:24.697522Z",
- "iopub.status.busy": "2024-11-19T19:09:24.696820Z",
- "iopub.status.idle": "2024-11-20T03:54:09.418782Z",
- "shell.execute_reply": "2024-11-20T03:54:09.417866Z"
- },
- "id": "yqxqAZ7KJ4oL",
- "outputId": "3cf26aac-6042-4458-c4a6-d8849efb6a95",
- "papermill": {
- "duration": 31484.789349,
- "end_time": "2024-11-20T03:54:09.420797",
- "exception": false,
- "start_time": "2024-11-19T19:09:24.631448",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1\n",
- " \\\\ /| Num examples = 17,983 | Num Epochs = 1\n",
- "O^O/ \\_/ \\ Batch size per device = 2 | Gradient Accumulation steps = 4\n",
- "\\ / Total batch size = 8 | Total steps = 2,248\n",
- " \"-____-\" Number of trainable parameters = 83,886,080\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- " \n",
- " \n",
- " \n",
- " [2248/2248 8:44:22, Epoch 1/1]\n",
- " \n",
- " \n",
- " \n",
- " \n",
- " Step | \n",
- " Training Loss | \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 1 | \n",
- " 2.630800 | \n",
- " \n",
- " \n",
- " 2 | \n",
- " 3.890600 | \n",
- " \n",
- " \n",
- " 3 | \n",
- " 2.046200 | \n",
- " \n",
- " \n",
- " 4 | \n",
- " 2.309300 | \n",
- " \n",
- " \n",
- " 5 | \n",
- " 2.590900 | \n",
- " \n",
- " \n",
- " 6 | \n",
- " 2.039400 | \n",
- " \n",
- " \n",
- " 7 | \n",
- " 1.953500 | \n",
- " \n",
- " \n",
- " 8 | \n",
- " 1.769300 | \n",
- " \n",
- " \n",
- " 9 | \n",
- " 2.016900 | \n",
- " \n",
- " \n",
- " 10 | \n",
- " 1.801700 | \n",
- " \n",
- " \n",
- " 11 | \n",
- " 1.576400 | \n",
- " \n",
- " \n",
- " 12 | \n",
- " 1.695400 | \n",
- " \n",
- " \n",
- " 13 | \n",
- " 2.032200 | \n",
- " \n",
- " \n",
- " 14 | \n",
- " 1.696800 | \n",
- " \n",
- " \n",
- " 15 | \n",
- " 2.109500 | \n",
- " \n",
- " \n",
- " 16 | \n",
- " 2.254800 | \n",
- " \n",
- " \n",
- " 17 | \n",
- " 1.357900 | \n",
- " \n",
- " \n",
- " 18 | \n",
- " 1.598300 | \n",
- " \n",
- " \n",
- " 19 | \n",
- " 1.539700 | \n",
- " \n",
- " \n",
- " 20 | \n",
- " 1.648300 | \n",
- " \n",
- " \n",
- " 21 | \n",
- " 1.754000 | \n",
- " \n",
- " \n",
- " 22 | \n",
- " 1.735000 | \n",
- " \n",
- " \n",
- " 23 | \n",
- " 2.434300 | \n",
- " \n",
- " \n",
- " 24 | \n",
- " 1.987900 | \n",
- " \n",
- " \n",
- " 25 | \n",
- " 1.295100 | \n",
- " \n",
- " \n",
- " 26 | \n",
- " 2.180100 | \n",
- " \n",
- " \n",
- " 27 | \n",
- " 2.082700 | \n",
- " \n",
- " \n",
- " 28 | \n",
- " 1.410300 | \n",
- " \n",
- " \n",
- " 29 | \n",
- " 1.446500 | \n",
- " \n",
- " \n",
- " 30 | \n",
- " 1.435300 | \n",
- " \n",
- " \n",
- " 31 | \n",
- " 1.730600 | \n",
- " \n",
- " \n",
- " 32 | \n",
- " 1.551800 | \n",
- " \n",
- " \n",
- " 33 | \n",
- " 1.482700 | \n",
- " \n",
- " \n",
- " 34 | \n",
- " 1.575600 | \n",
- " \n",
- " \n",
- " 35 | \n",
- " 2.223500 | \n",
- " \n",
- " \n",
- " 36 | \n",
- " 2.106000 | \n",
- " \n",
- " \n",
- " 37 | \n",
- " 1.657500 | \n",
- " \n",
- " \n",
- " 38 | \n",
- " 1.472100 | \n",
- " \n",
- " \n",
- " 39 | \n",
- " 1.612800 | \n",
- " \n",
- " \n",
- " 40 | \n",
- " 1.556300 | \n",
- " \n",
- " \n",
- " 41 | \n",
- " 1.471300 | \n",
- " \n",
- " \n",
- " 42 | \n",
- " 1.350800 | \n",
- " \n",
- " \n",
- " 43 | \n",
- " 1.383000 | \n",
- " \n",
- " \n",
- " 44 | \n",
- " 1.837300 | \n",
- " \n",
- " \n",
- " 45 | \n",
- " 1.466900 | \n",
- " \n",
- " \n",
- " 46 | \n",
- " 1.402600 | \n",
- " \n",
- " \n",
- " 47 | \n",
- " 1.303800 | \n",
- " \n",
- " \n",
- " 48 | \n",
- " 1.289400 | \n",
- " \n",
- " \n",
- " 49 | \n",
- " 2.615500 | \n",
- " \n",
- " \n",
- " 50 | \n",
- " 1.423800 | \n",
- " \n",
- " \n",
- " 51 | \n",
- " 1.415600 | \n",
- " \n",
- " \n",
- " 52 | \n",
- " 1.592000 | \n",
- " \n",
- " \n",
- " 53 | \n",
- " 1.259700 | \n",
- " \n",
- " \n",
- " 54 | \n",
- " 1.572500 | \n",
- " \n",
- " \n",
- " 55 | \n",
- " 1.458800 | \n",
- " \n",
- " \n",
- " 56 | \n",
- " 1.322500 | \n",
- " \n",
- " \n",
- " 57 | \n",
- " 1.411800 | \n",
- " \n",
- " \n",
- " 58 | \n",
- " 1.847200 | \n",
- " \n",
- " \n",
- " 59 | \n",
- " 1.725800 | \n",
- " \n",
- " \n",
- " 60 | \n",
- " 1.620000 | \n",
- " \n",
- " \n",
- " 61 | \n",
- " 1.664900 | \n",
- " \n",
- " \n",
- " 62 | \n",
- " 1.662400 | \n",
- " \n",
- " \n",
- " 63 | \n",
- " 2.695700 | \n",
- " \n",
- " \n",
- " 64 | \n",
- " 1.526500 | \n",
- " \n",
- " \n",
- " 65 | \n",
- " 1.645500 | \n",
- " \n",
- " \n",
- " 66 | \n",
- " 1.431200 | \n",
- " \n",
- " \n",
- " 67 | \n",
- " 2.222500 | \n",
- " \n",
- " \n",
- " 68 | \n",
- " 1.723900 | \n",
- " \n",
- " \n",
- " 69 | \n",
- " 1.636600 | \n",
- " \n",
- " \n",
- " 70 | \n",
- " 1.557700 | \n",
- " \n",
- " \n",
- " 71 | \n",
- " 1.690900 | \n",
- " \n",
- " \n",
- " 72 | \n",
- " 2.912400 | \n",
- " \n",
- " \n",
- " 73 | \n",
- " 1.290300 | \n",
- " \n",
- " \n",
- " 74 | \n",
- " 1.954400 | \n",
- " \n",
- " \n",
- " 75 | \n",
- " 1.888500 | \n",
- " \n",
- " \n",
- " 76 | \n",
- " 1.399600 | \n",
- " \n",
- " \n",
- " 77 | \n",
- " 1.522700 | \n",
- " \n",
- " \n",
- " 78 | \n",
- " 1.376900 | \n",
- " \n",
- " \n",
- " 79 | \n",
- " 1.562900 | \n",
- " \n",
- " \n",
- " 80 | \n",
- " 1.479700 | \n",
- " \n",
- " \n",
- " 81 | \n",
- " 1.277100 | \n",
- " \n",
- " \n",
- " 82 | \n",
- " 1.612200 | \n",
- " \n",
- " \n",
- " 83 | \n",
- " 1.596400 | \n",
- " \n",
- " \n",
- " 84 | \n",
- " 1.767900 | \n",
- " \n",
- " \n",
- " 85 | \n",
- " 1.235800 | \n",
- " \n",
- " \n",
- " 86 | \n",
- " 1.574400 | \n",
- " \n",
- " \n",
- " 87 | \n",
- " 1.754300 | \n",
- " \n",
- " \n",
- " 88 | \n",
- " 2.280800 | \n",
- " \n",
- " \n",
- " 89 | \n",
- " 1.484400 | \n",
- " \n",
- " \n",
- " 90 | \n",
- " 1.970000 | \n",
- " \n",
- " \n",
- " 91 | \n",
- " 2.784900 | \n",
- " \n",
- " \n",
- " 92 | \n",
- " 1.193300 | \n",
- " \n",
- " \n",
- " 93 | \n",
- " 1.194500 | \n",
- " \n",
- " \n",
- " 94 | \n",
- " 1.298700 | \n",
- " \n",
- " \n",
- " 95 | \n",
- " 1.497400 | \n",
- " \n",
- " \n",
- " 96 | \n",
- " 1.489800 | \n",
- " \n",
- " \n",
- " 97 | \n",
- " 1.329000 | \n",
- " \n",
- " \n",
- " 98 | \n",
- " 1.558400 | \n",
- " \n",
- " \n",
- " 99 | \n",
- " 1.790600 | \n",
- " \n",
- " \n",
- " 100 | \n",
- " 1.515000 | \n",
- " \n",
- " \n",
- " 101 | \n",
- " 1.375700 | \n",
- " \n",
- " \n",
- " 102 | \n",
- " 1.339900 | \n",
- " \n",
- " \n",
- " 103 | \n",
- " 1.910300 | \n",
- " \n",
- " \n",
- " 104 | \n",
- " 1.336000 | \n",
- " \n",
- " \n",
- " 105 | \n",
- " 1.809300 | \n",
- " \n",
- " \n",
- " 106 | \n",
- " 1.585100 | \n",
- " \n",
- " \n",
- " 107 | \n",
- " 1.396300 | \n",
- " \n",
- " \n",
- " 108 | \n",
- " 1.708700 | \n",
- " \n",
- " \n",
- " 109 | \n",
- " 1.253400 | \n",
- " \n",
- " \n",
- " 110 | \n",
- " 1.390500 | \n",
- " \n",
- " \n",
- " 111 | \n",
- " 1.351900 | \n",
- " \n",
- " \n",
- " 112 | \n",
- " 1.464300 | \n",
- " \n",
- " \n",
- " 113 | \n",
- " 1.383400 | \n",
- " \n",
- " \n",
- " 114 | \n",
- " 1.834200 | \n",
- " \n",
- " \n",
- " 115 | \n",
- " 1.374400 | \n",
- " \n",
- " \n",
- " 116 | \n",
- " 1.805500 | \n",
- " \n",
- " \n",
- " 117 | \n",
- " 1.491200 | \n",
- " \n",
- " \n",
- " 118 | \n",
- " 1.725400 | \n",
- " \n",
- " \n",
- " 119 | \n",
- " 1.205700 | \n",
- " \n",
- " \n",
- " 120 | \n",
- " 1.665300 | \n",
- " \n",
- " \n",
- " 121 | \n",
- " 1.563900 | \n",
- " \n",
- " \n",
- " 122 | \n",
- " 1.415700 | \n",
- " \n",
- " \n",
- " 123 | \n",
- " 1.667000 | \n",
- " \n",
- " \n",
- " 124 | \n",
- " 1.442300 | \n",
- " \n",
- " \n",
- " 125 | \n",
- " 1.666900 | \n",
- " \n",
- " \n",
- " 126 | \n",
- " 1.890500 | \n",
- " \n",
- " \n",
- " 127 | \n",
- " 2.156600 | \n",
- " \n",
- " \n",
- " 128 | \n",
- " 1.403700 | \n",
- " \n",
- " \n",
- " 129 | \n",
- " 1.523600 | \n",
- " \n",
- " \n",
- " 130 | \n",
- " 1.526900 | \n",
- " \n",
- " \n",
- " 131 | \n",
- " 1.265600 | \n",
- " \n",
- " \n",
- " 132 | \n",
- " 1.518900 | \n",
- " \n",
- " \n",
- " 133 | \n",
- " 1.244900 | \n",
- " \n",
- " \n",
- " 134 | \n",
- " 1.950600 | \n",
- " \n",
- " \n",
- " 135 | \n",
- " 1.854500 | \n",
- " \n",
- " \n",
- " 136 | \n",
- " 1.391500 | \n",
- " \n",
- " \n",
- " 137 | \n",
- " 1.904300 | \n",
- " \n",
- " \n",
- " 138 | \n",
- " 1.427200 | \n",
- " \n",
- " \n",
- " 139 | \n",
- " 1.240400 | \n",
- " \n",
- " \n",
- " 140 | \n",
- " 1.249600 | \n",
- " \n",
- " \n",
- " 141 | \n",
- " 1.292200 | \n",
- " \n",
- " \n",
- " 142 | \n",
- " 2.007600 | \n",
- " \n",
- " \n",
- " 143 | \n",
- " 1.521400 | \n",
- " \n",
- " \n",
- " 144 | \n",
- " 2.039100 | \n",
- " \n",
- " \n",
- " 145 | \n",
- " 1.960900 | \n",
- " \n",
- " \n",
- " 146 | \n",
- " 1.939400 | \n",
- " \n",
- " \n",
- " 147 | \n",
- " 1.669800 | \n",
- " \n",
- " \n",
- " 148 | \n",
- " 1.558000 | \n",
- " \n",
- " \n",
- " 149 | \n",
- " 1.829700 | \n",
- " \n",
- " \n",
- " 150 | \n",
- " 1.790300 | \n",
- " \n",
- " \n",
- " 151 | \n",
- " 2.170600 | \n",
- " \n",
- " \n",
- " 152 | \n",
- " 1.371500 | \n",
- " \n",
- " \n",
- " 153 | \n",
- " 2.082900 | \n",
- " \n",
- " \n",
- " 154 | \n",
- " 1.852700 | \n",
- " \n",
- " \n",
- " 155 | \n",
- " 1.285800 | \n",
- " \n",
- " \n",
- " 156 | \n",
- " 1.336700 | \n",
- " \n",
- " \n",
- " 157 | \n",
- " 1.375500 | \n",
- " \n",
- " \n",
- " 158 | \n",
- " 1.764100 | \n",
- " \n",
- " \n",
- " 159 | \n",
- " 1.345000 | \n",
- " \n",
- " \n",
- " 160 | \n",
- " 1.140800 | \n",
- " \n",
- " \n",
- " 161 | \n",
- " 1.412700 | \n",
- " \n",
- " \n",
- " 162 | \n",
- " 1.752300 | \n",
- " \n",
- " \n",
- " 163 | \n",
- " 1.368300 | \n",
- " \n",
- " \n",
- " 164 | \n",
- " 1.309200 | \n",
- " \n",
- " \n",
- " 165 | \n",
- " 1.354100 | \n",
- " \n",
- " \n",
- " 166 | \n",
- " 1.696000 | \n",
- " \n",
- " \n",
- " 167 | \n",
- " 1.723500 | \n",
- " \n",
- " \n",
- " 168 | \n",
- " 1.511200 | \n",
- " \n",
- " \n",
- " 169 | \n",
- " 1.483300 | \n",
- " \n",
- " \n",
- " 170 | \n",
- " 1.415700 | \n",
- " \n",
- " \n",
- " 171 | \n",
- " 1.287400 | \n",
- " \n",
- " \n",
- " 172 | \n",
- " 1.483200 | \n",
- " \n",
- " \n",
- " 173 | \n",
- " 1.562700 | \n",
- " \n",
- " \n",
- " 174 | \n",
- " 1.361400 | \n",
- " \n",
- " \n",
- " 175 | \n",
- " 2.597900 | \n",
- " \n",
- " \n",
- " 176 | \n",
- " 1.436000 | \n",
- " \n",
- " \n",
- " 177 | \n",
- " 1.306000 | \n",
- " \n",
- " \n",
- " 178 | \n",
- " 1.416300 | \n",
- " \n",
- " \n",
- " 179 | \n",
- " 1.876800 | \n",
- " \n",
- " \n",
- " 180 | \n",
- " 1.555100 | \n",
- " \n",
- " \n",
- " 181 | \n",
- " 1.620600 | \n",
- " \n",
- " \n",
- " 182 | \n",
- " 2.247000 | \n",
- " \n",
- " \n",
- " 183 | \n",
- " 1.629000 | \n",
- " \n",
- " \n",
- " 184 | \n",
- " 2.113300 | \n",
- " \n",
- " \n",
- " 185 | \n",
- " 1.246700 | \n",
- " \n",
- " \n",
- " 186 | \n",
- " 1.565700 | \n",
- " \n",
- " \n",
- " 187 | \n",
- " 1.504300 | \n",
- " \n",
- " \n",
- " 188 | \n",
- " 1.827100 | \n",
- " \n",
- " \n",
- " 189 | \n",
- " 1.559800 | \n",
- " \n",
- " \n",
- " 190 | \n",
- " 1.321600 | \n",
- " \n",
- " \n",
- " 191 | \n",
- " 1.795400 | \n",
- " \n",
- " \n",
- " 192 | \n",
- " 1.367100 | \n",
- " \n",
- " \n",
- " 193 | \n",
- " 1.439100 | \n",
- " \n",
- " \n",
- " 194 | \n",
- " 1.281500 | \n",
- " \n",
- " \n",
- " 195 | \n",
- " 1.306900 | \n",
- " \n",
- " \n",
- " 196 | \n",
- " 1.875500 | \n",
- " \n",
- " \n",
- " 197 | \n",
- " 1.467800 | \n",
- " \n",
- " \n",
- " 198 | \n",
- " 2.002600 | \n",
- " \n",
- " \n",
- " 199 | \n",
- " 1.374800 | \n",
- " \n",
- " \n",
- " 200 | \n",
- " 1.397600 | \n",
- " \n",
- " \n",
- " 201 | \n",
- " 1.292000 | \n",
- " \n",
- " \n",
- " 202 | \n",
- " 1.574200 | \n",
- " \n",
- " \n",
- " 203 | \n",
- " 1.563400 | \n",
- " \n",
- " \n",
- " 204 | \n",
- " 1.942800 | \n",
- " \n",
- " \n",
- " 205 | \n",
- " 1.298600 | \n",
- " \n",
- " \n",
- " 206 | \n",
- " 1.613900 | \n",
- " \n",
- " \n",
- " 207 | \n",
- " 1.309400 | \n",
- " \n",
- " \n",
- " 208 | \n",
- " 1.714200 | \n",
- " \n",
- " \n",
- " 209 | \n",
- " 1.500000 | \n",
- " \n",
- " \n",
- " 210 | \n",
- " 1.453800 | \n",
- " \n",
- " \n",
- " 211 | \n",
- " 1.489000 | \n",
- " \n",
- " \n",
- " 212 | \n",
- " 1.647800 | \n",
- " \n",
- " \n",
- " 213 | \n",
- " 1.430400 | \n",
- " \n",
- " \n",
- " 214 | \n",
- " 1.426000 | \n",
- " \n",
- " \n",
- " 215 | \n",
- " 1.686200 | \n",
- " \n",
- " \n",
- " 216 | \n",
- " 1.649600 | \n",
- " \n",
- " \n",
- " 217 | \n",
- " 1.787100 | \n",
- " \n",
- " \n",
- " 218 | \n",
- " 1.456800 | \n",
- " \n",
- " \n",
- " 219 | \n",
- " 1.419800 | \n",
- " \n",
- " \n",
- " 220 | \n",
- " 1.432400 | \n",
- " \n",
- " \n",
- " 221 | \n",
- " 1.380800 | \n",
- " \n",
- " \n",
- " 222 | \n",
- " 1.598300 | \n",
- " \n",
- " \n",
- " 223 | \n",
- " 1.831000 | \n",
- " \n",
- " \n",
- " 224 | \n",
- " 1.740900 | \n",
- " \n",
- " \n",
- " 225 | \n",
- " 1.429500 | \n",
- " \n",
- " \n",
- " 226 | \n",
- " 1.643800 | \n",
- " \n",
- " \n",
- " 227 | \n",
- " 2.096100 | \n",
- " \n",
- " \n",
- " 228 | \n",
- " 1.973500 | \n",
- " \n",
- " \n",
- " 229 | \n",
- " 1.752800 | \n",
- " \n",
- " \n",
- " 230 | \n",
- " 1.656700 | \n",
- " \n",
- " \n",
- " 231 | \n",
- " 1.238000 | \n",
- " \n",
- " \n",
- " 232 | \n",
- " 1.988300 | \n",
- " \n",
- " \n",
- " 233 | \n",
- " 1.654400 | \n",
- " \n",
- " \n",
- " 234 | \n",
- " 1.746100 | \n",
- " \n",
- " \n",
- " 235 | \n",
- " 1.384200 | \n",
- " \n",
- " \n",
- " 236 | \n",
- " 1.585900 | \n",
- " \n",
- " \n",
- " 237 | \n",
- " 1.876900 | \n",
- " \n",
- " \n",
- " 238 | \n",
- " 1.353400 | \n",
- " \n",
- " \n",
- " 239 | \n",
- " 1.578700 | \n",
- " \n",
- " \n",
- " 240 | \n",
- " 1.437200 | \n",
- " \n",
- " \n",
- " 241 | \n",
- " 1.253500 | \n",
- " \n",
- " \n",
- " 242 | \n",
- " 1.366800 | \n",
- " \n",
- " \n",
- " 243 | \n",
- " 1.374000 | \n",
- " \n",
- " \n",
- " 244 | \n",
- " 1.716100 | \n",
- " \n",
- " \n",
- " 245 | \n",
- " 1.207600 | \n",
- " \n",
- " \n",
- " 246 | \n",
- " 1.333400 | \n",
- " \n",
- " \n",
- " 247 | \n",
- " 1.428700 | \n",
- " \n",
- " \n",
- " 248 | \n",
- " 1.522900 | \n",
- " \n",
- " \n",
- " 249 | \n",
- " 1.558700 | \n",
- " \n",
- " \n",
- " 250 | \n",
- " 1.341900 | \n",
- " \n",
- " \n",
- " 251 | \n",
- " 1.483800 | \n",
- " \n",
- " \n",
- " 252 | \n",
- " 1.863500 | \n",
- " \n",
- " \n",
- " 253 | \n",
- " 1.339100 | \n",
- " \n",
- " \n",
- " 254 | \n",
- " 1.506000 | \n",
- " \n",
- " \n",
- " 255 | \n",
- " 1.699300 | \n",
- " \n",
- " \n",
- " 256 | \n",
- " 1.450600 | \n",
- " \n",
- " \n",
- " 257 | \n",
- " 1.396900 | \n",
- " \n",
- " \n",
- " 258 | \n",
- " 1.934000 | \n",
- " \n",
- " \n",
- " 259 | \n",
- " 1.916600 | \n",
- " \n",
- " \n",
- " 260 | \n",
- " 1.467200 | \n",
- " \n",
- " \n",
- " 261 | \n",
- " 1.481400 | \n",
- " \n",
- " \n",
- " 262 | \n",
- " 1.489800 | \n",
- " \n",
- " \n",
- " 263 | \n",
- " 1.483800 | \n",
- " \n",
- " \n",
- " 264 | \n",
- " 1.201600 | \n",
- " \n",
- " \n",
- " 265 | \n",
- " 1.425700 | \n",
- " \n",
- " \n",
- " 266 | \n",
- " 1.960000 | \n",
- " \n",
- " \n",
- " 267 | \n",
- " 1.179500 | \n",
- " \n",
- " \n",
- " 268 | \n",
- " 1.530600 | \n",
- " \n",
- " \n",
- " 269 | \n",
- " 1.489700 | \n",
- " \n",
- " \n",
- " 270 | \n",
- " 1.752900 | \n",
- " \n",
- " \n",
- " 271 | \n",
- " 1.117600 | \n",
- " \n",
- " \n",
- " 272 | \n",
- " 1.522700 | \n",
- " \n",
- " \n",
- " 273 | \n",
- " 1.337000 | \n",
- " \n",
- " \n",
- " 274 | \n",
- " 1.435400 | \n",
- " \n",
- " \n",
- " 275 | \n",
- " 1.799900 | \n",
- " \n",
- " \n",
- " 276 | \n",
- " 1.513800 | \n",
- " \n",
- " \n",
- " 277 | \n",
- " 1.675900 | \n",
- " \n",
- " \n",
- " 278 | \n",
- " 1.576400 | \n",
- " \n",
- " \n",
- " 279 | \n",
- " 1.201000 | \n",
- " \n",
- " \n",
- " 280 | \n",
- " 1.514300 | \n",
- " \n",
- " \n",
- " 281 | \n",
- " 1.182400 | \n",
- " \n",
- " \n",
- " 282 | \n",
- " 1.476700 | \n",
- " \n",
- " \n",
- " 283 | \n",
- " 1.749500 | \n",
- " \n",
- " \n",
- " 284 | \n",
- " 1.393500 | \n",
- " \n",
- " \n",
- " 285 | \n",
- " 1.219900 | \n",
- " \n",
- " \n",
- " 286 | \n",
- " 2.029000 | \n",
- " \n",
- " \n",
- " 287 | \n",
- " 1.613700 | \n",
- " \n",
- " \n",
- " 288 | \n",
- " 1.534200 | \n",
- " \n",
- " \n",
- " 289 | \n",
- " 1.598400 | \n",
- " \n",
- " \n",
- " 290 | \n",
- " 1.638300 | \n",
- " \n",
- " \n",
- " 291 | \n",
- " 1.297900 | \n",
- " \n",
- " \n",
- " 292 | \n",
- " 1.190500 | \n",
- " \n",
- " \n",
- " 293 | \n",
- " 1.308400 | \n",
- " \n",
- " \n",
- " 294 | \n",
- " 1.684000 | \n",
- " \n",
- " \n",
- " 295 | \n",
- " 1.529900 | \n",
- " \n",
- " \n",
- " 296 | \n",
- " 1.313900 | \n",
- " \n",
- " \n",
- " 297 | \n",
- " 1.689900 | \n",
- " \n",
- " \n",
- " 298 | \n",
- " 1.836100 | \n",
- " \n",
- " \n",
- " 299 | \n",
- " 0.988100 | \n",
- " \n",
- " \n",
- " 300 | \n",
- " 2.004800 | \n",
- " \n",
- " \n",
- " 301 | \n",
- " 1.471100 | \n",
- " \n",
- " \n",
- " 302 | \n",
- " 1.772600 | \n",
- " \n",
- " \n",
- " 303 | \n",
- " 1.634900 | \n",
- " \n",
- " \n",
- " 304 | \n",
- " 1.552100 | \n",
- " \n",
- " \n",
- " 305 | \n",
- " 1.773300 | \n",
- " \n",
- " \n",
- " 306 | \n",
- " 1.281600 | \n",
- " \n",
- " \n",
- " 307 | \n",
- " 1.880300 | \n",
- " \n",
- " \n",
- " 308 | \n",
- " 1.302500 | \n",
- " \n",
- " \n",
- " 309 | \n",
- " 1.628900 | \n",
- " \n",
- " \n",
- " 310 | \n",
- " 1.379500 | \n",
- " \n",
- " \n",
- " 311 | \n",
- " 1.751200 | \n",
- " \n",
- " \n",
- " 312 | \n",
- " 1.635100 | \n",
- " \n",
- " \n",
- " 313 | \n",
- " 1.433400 | \n",
- " \n",
- " \n",
- " 314 | \n",
- " 1.383600 | \n",
- " \n",
- " \n",
- " 315 | \n",
- " 1.943200 | \n",
- " \n",
- " \n",
- " 316 | \n",
- " 1.407600 | \n",
- " \n",
- " \n",
- " 317 | \n",
- " 1.611600 | \n",
- " \n",
- " \n",
- " 318 | \n",
- " 1.418900 | \n",
- " \n",
- " \n",
- " 319 | \n",
- " 1.279200 | \n",
- " \n",
- " \n",
- " 320 | \n",
- " 1.244300 | \n",
- " \n",
- " \n",
- " 321 | \n",
- " 1.520300 | \n",
- " \n",
- " \n",
- " 322 | \n",
- " 1.269600 | \n",
- " \n",
- " \n",
- " 323 | \n",
- " 1.691100 | \n",
- " \n",
- " \n",
- " 324 | \n",
- " 1.492600 | \n",
- " \n",
- " \n",
- " 325 | \n",
- " 1.520900 | \n",
- " \n",
- " \n",
- " 326 | \n",
- " 1.526200 | \n",
- " \n",
- " \n",
- " 327 | \n",
- " 1.318200 | \n",
- " \n",
- " \n",
- " 328 | \n",
- " 1.447700 | \n",
- " \n",
- " \n",
- " 329 | \n",
- " 1.462800 | \n",
- " \n",
- " \n",
- " 330 | \n",
- " 1.310700 | \n",
- " \n",
- " \n",
- " 331 | \n",
- " 1.142200 | \n",
- " \n",
- " \n",
- " 332 | \n",
- " 1.602700 | \n",
- " \n",
- " \n",
- " 333 | \n",
- " 1.547900 | \n",
- " \n",
- " \n",
- " 334 | \n",
- " 1.257900 | \n",
- " \n",
- " \n",
- " 335 | \n",
- " 1.455500 | \n",
- " \n",
- " \n",
- " 336 | \n",
- " 1.856100 | \n",
- " \n",
- " \n",
- " 337 | \n",
- " 1.951500 | \n",
- " \n",
- " \n",
- " 338 | \n",
- " 1.285300 | \n",
- " \n",
- " \n",
- " 339 | \n",
- " 1.459400 | \n",
- " \n",
- " \n",
- " 340 | \n",
- " 1.330600 | \n",
- " \n",
- " \n",
- " 341 | \n",
- " 1.553900 | \n",
- " \n",
- " \n",
- " 342 | \n",
- " 1.273900 | \n",
- " \n",
- " \n",
- " 343 | \n",
- " 1.747800 | \n",
- " \n",
- " \n",
- " 344 | \n",
- " 1.244400 | \n",
- " \n",
- " \n",
- " 345 | \n",
- " 1.430000 | \n",
- " \n",
- " \n",
- " 346 | \n",
- " 1.529500 | \n",
- " \n",
- " \n",
- " 347 | \n",
- " 1.239300 | \n",
- " \n",
- " \n",
- " 348 | \n",
- " 1.446900 | \n",
- " \n",
- " \n",
- " 349 | \n",
- " 1.354200 | \n",
- " \n",
- " \n",
- " 350 | \n",
- " 1.366100 | \n",
- " \n",
- " \n",
- " 351 | \n",
- " 1.577100 | \n",
- " \n",
- " \n",
- " 352 | \n",
- " 1.198800 | \n",
- " \n",
- " \n",
- " 353 | \n",
- " 1.002100 | \n",
- " \n",
- " \n",
- " 354 | \n",
- " 1.733200 | \n",
- " \n",
- " \n",
- " 355 | \n",
- " 1.396900 | \n",
- " \n",
- " \n",
- " 356 | \n",
- " 1.196100 | \n",
- " \n",
- " \n",
- " 357 | \n",
- " 2.214000 | \n",
- " \n",
- " \n",
- " 358 | \n",
- " 1.258000 | \n",
- " \n",
- " \n",
- " 359 | \n",
- " 1.507500 | \n",
- " \n",
- " \n",
- " 360 | \n",
- " 1.523100 | \n",
- " \n",
- " \n",
- " 361 | \n",
- " 1.775900 | \n",
- " \n",
- " \n",
- " 362 | \n",
- " 1.635000 | \n",
- " \n",
- " \n",
- " 363 | \n",
- " 1.403300 | \n",
- " \n",
- " \n",
- " 364 | \n",
- " 1.290600 | \n",
- " \n",
- " \n",
- " 365 | \n",
- " 1.910600 | \n",
- " \n",
- " \n",
- " 366 | \n",
- " 1.062600 | \n",
- " \n",
- " \n",
- " 367 | \n",
- " 1.305800 | \n",
- " \n",
- " \n",
- " 368 | \n",
- " 1.496100 | \n",
- " \n",
- " \n",
- " 369 | \n",
- " 1.966700 | \n",
- " \n",
- " \n",
- " 370 | \n",
- " 1.938000 | \n",
- " \n",
- " \n",
- " 371 | \n",
- " 1.379900 | \n",
- " \n",
- " \n",
- " 372 | \n",
- " 1.668600 | \n",
- " \n",
- " \n",
- " 373 | \n",
- " 1.817900 | \n",
- " \n",
- " \n",
- " 374 | \n",
- " 1.280400 | \n",
- " \n",
- " \n",
- " 375 | \n",
- " 1.392400 | \n",
- " \n",
- " \n",
- " 376 | \n",
- " 1.321900 | \n",
- " \n",
- " \n",
- " 377 | \n",
- " 1.183100 | \n",
- " \n",
- " \n",
- " 378 | \n",
- " 1.154900 | \n",
- " \n",
- " \n",
- " 379 | \n",
- " 1.798800 | \n",
- " \n",
- " \n",
- " 380 | \n",
- " 1.418800 | \n",
- " \n",
- " \n",
- " 381 | \n",
- " 1.549300 | \n",
- " \n",
- " \n",
- " 382 | \n",
- " 1.545200 | \n",
- " \n",
- " \n",
- " 383 | \n",
- " 1.501500 | \n",
- " \n",
- " \n",
- " 384 | \n",
- " 1.887700 | \n",
- " \n",
- " \n",
- " 385 | \n",
- " 1.446700 | \n",
- " \n",
- " \n",
- " 386 | \n",
- " 1.279900 | \n",
- " \n",
- " \n",
- " 387 | \n",
- " 1.308700 | \n",
- " \n",
- " \n",
- " 388 | \n",
- " 1.602800 | \n",
- " \n",
- " \n",
- " 389 | \n",
- " 1.582900 | \n",
- " \n",
- " \n",
- " 390 | \n",
- " 1.423400 | \n",
- " \n",
- " \n",
- " 391 | \n",
- " 1.529300 | \n",
- " \n",
- " \n",
- " 392 | \n",
- " 1.696300 | \n",
- " \n",
- " \n",
- " 393 | \n",
- " 1.673200 | \n",
- " \n",
- " \n",
- " 394 | \n",
- " 1.109700 | \n",
- " \n",
- " \n",
- " 395 | \n",
- " 1.248800 | \n",
- " \n",
- " \n",
- " 396 | \n",
- " 1.089700 | \n",
- " \n",
- " \n",
- " 397 | \n",
- " 1.326600 | \n",
- " \n",
- " \n",
- " 398 | \n",
- " 1.688600 | \n",
- " \n",
- " \n",
- " 399 | \n",
- " 1.681000 | \n",
- " \n",
- " \n",
- " 400 | \n",
- " 1.423900 | \n",
- " \n",
- " \n",
- " 401 | \n",
- " 1.131800 | \n",
- " \n",
- " \n",
- " 402 | \n",
- " 1.154600 | \n",
- " \n",
- " \n",
- " 403 | \n",
- " 1.463200 | \n",
- " \n",
- " \n",
- " 404 | \n",
- " 1.229600 | \n",
- " \n",
- " \n",
- " 405 | \n",
- " 2.188300 | \n",
- " \n",
- " \n",
- " 406 | \n",
- " 1.538900 | \n",
- " \n",
- " \n",
- " 407 | \n",
- " 1.662500 | \n",
- " \n",
- " \n",
- " 408 | \n",
- " 1.718800 | \n",
- " \n",
- " \n",
- " 409 | \n",
- " 1.526500 | \n",
- " \n",
- " \n",
- " 410 | \n",
- " 1.792600 | \n",
- " \n",
- " \n",
- " 411 | \n",
- " 1.354700 | \n",
- " \n",
- " \n",
- " 412 | \n",
- " 1.364100 | \n",
- " \n",
- " \n",
- " 413 | \n",
- " 1.441500 | \n",
- " \n",
- " \n",
- " 414 | \n",
- " 1.432600 | \n",
- " \n",
- " \n",
- " 415 | \n",
- " 1.684900 | \n",
- " \n",
- " \n",
- " 416 | \n",
- " 1.885400 | \n",
- " \n",
- " \n",
- " 417 | \n",
- " 2.052100 | \n",
- " \n",
- " \n",
- " 418 | \n",
- " 1.424000 | \n",
- " \n",
- " \n",
- " 419 | \n",
- " 1.474100 | \n",
- " \n",
- " \n",
- " 420 | \n",
- " 1.130200 | \n",
- " \n",
- " \n",
- " 421 | \n",
- " 2.011000 | \n",
- " \n",
- " \n",
- " 422 | \n",
- " 1.323600 | \n",
- " \n",
- " \n",
- " 423 | \n",
- " 1.810000 | \n",
- " \n",
- " \n",
- " 424 | \n",
- " 1.666700 | \n",
- " \n",
- " \n",
- " 425 | \n",
- " 1.281500 | \n",
- " \n",
- " \n",
- " 426 | \n",
- " 1.930800 | \n",
- " \n",
- " \n",
- " 427 | \n",
- " 1.210800 | \n",
- " \n",
- " \n",
- " 428 | \n",
- " 2.097600 | \n",
- " \n",
- " \n",
- " 429 | \n",
- " 1.300800 | \n",
- " \n",
- " \n",
- " 430 | \n",
- " 1.525600 | \n",
- " \n",
- " \n",
- " 431 | \n",
- " 2.123900 | \n",
- " \n",
- " \n",
- " 432 | \n",
- " 1.948600 | \n",
- " \n",
- " \n",
- " 433 | \n",
- " 1.202800 | \n",
- " \n",
- " \n",
- " 434 | \n",
- " 1.412100 | \n",
- " \n",
- " \n",
- " 435 | \n",
- " 1.424500 | \n",
- " \n",
- " \n",
- " 436 | \n",
- " 1.254200 | \n",
- " \n",
- " \n",
- " 437 | \n",
- " 1.594300 | \n",
- " \n",
- " \n",
- " 438 | \n",
- " 1.343600 | \n",
- " \n",
- " \n",
- " 439 | \n",
- " 2.224800 | \n",
- " \n",
- " \n",
- " 440 | \n",
- " 1.648500 | \n",
- " \n",
- " \n",
- " 441 | \n",
- " 1.470300 | \n",
- " \n",
- " \n",
- " 442 | \n",
- " 1.676900 | \n",
- " \n",
- " \n",
- " 443 | \n",
- " 1.660600 | \n",
- " \n",
- " \n",
- " 444 | \n",
- " 1.278800 | \n",
- " \n",
- " \n",
- " 445 | \n",
- " 1.455500 | \n",
- " \n",
- " \n",
- " 446 | \n",
- " 1.843400 | \n",
- " \n",
- " \n",
- " 447 | \n",
- " 1.452500 | \n",
- " \n",
- " \n",
- " 448 | \n",
- " 1.401100 | \n",
- " \n",
- " \n",
- " 449 | \n",
- " 1.349800 | \n",
- " \n",
- " \n",
- " 450 | \n",
- " 1.570700 | \n",
- " \n",
- " \n",
- " 451 | \n",
- " 1.419100 | \n",
- " \n",
- " \n",
- " 452 | \n",
- " 1.579500 | \n",
- " \n",
- " \n",
- " 453 | \n",
- " 1.726000 | \n",
- " \n",
- " \n",
- " 454 | \n",
- " 1.226900 | \n",
- " \n",
- " \n",
- " 455 | \n",
- " 1.650000 | \n",
- " \n",
- " \n",
- " 456 | \n",
- " 2.521900 | \n",
- " \n",
- " \n",
- " 457 | \n",
- " 1.394800 | \n",
- " \n",
- " \n",
- " 458 | \n",
- " 1.665600 | \n",
- " \n",
- " \n",
- " 459 | \n",
- " 1.412600 | \n",
- " \n",
- " \n",
- " 460 | \n",
- " 1.723900 | \n",
- " \n",
- " \n",
- " 461 | \n",
- " 1.355500 | \n",
- " \n",
- " \n",
- " 462 | \n",
- " 1.423500 | \n",
- " \n",
- " \n",
- " 463 | \n",
- " 1.738900 | \n",
- " \n",
- " \n",
- " 464 | \n",
- " 1.365700 | \n",
- " \n",
- " \n",
- " 465 | \n",
- " 1.528600 | \n",
- " \n",
- " \n",
- " 466 | \n",
- " 1.501800 | \n",
- " \n",
- " \n",
- " 467 | \n",
- " 1.463700 | \n",
- " \n",
- " \n",
- " 468 | \n",
- " 1.329600 | \n",
- " \n",
- " \n",
- " 469 | \n",
- " 1.329900 | \n",
- " \n",
- " \n",
- " 470 | \n",
- " 2.145800 | \n",
- " \n",
- " \n",
- " 471 | \n",
- " 1.581700 | \n",
- " \n",
- " \n",
- " 472 | \n",
- " 1.282900 | \n",
- " \n",
- " \n",
- " 473 | \n",
- " 1.661500 | \n",
- " \n",
- " \n",
- " 474 | \n",
- " 1.645100 | \n",
- " \n",
- " \n",
- " 475 | \n",
- " 1.325900 | \n",
- " \n",
- " \n",
- " 476 | \n",
- " 1.704000 | \n",
- " \n",
- " \n",
- " 477 | \n",
- " 1.312400 | \n",
- " \n",
- " \n",
- " 478 | \n",
- " 1.279000 | \n",
- " \n",
- " \n",
- " 479 | \n",
- " 1.162900 | \n",
- " \n",
- " \n",
- " 480 | \n",
- " 1.459400 | \n",
- " \n",
- " \n",
- " 481 | \n",
- " 1.444600 | \n",
- " \n",
- " \n",
- " 482 | \n",
- " 1.411800 | \n",
- " \n",
- " \n",
- " 483 | \n",
- " 1.143400 | \n",
- " \n",
- " \n",
- " 484 | \n",
- " 1.720400 | \n",
- " \n",
- " \n",
- " 485 | \n",
- " 1.269200 | \n",
- " \n",
- " \n",
- " 486 | \n",
- " 1.291000 | \n",
- " \n",
- " \n",
- " 487 | \n",
- " 1.524500 | \n",
- " \n",
- " \n",
- " 488 | \n",
- " 1.729100 | \n",
- " \n",
- " \n",
- " 489 | \n",
- " 1.271900 | \n",
- " \n",
- " \n",
- " 490 | \n",
- " 1.582800 | \n",
- " \n",
- " \n",
- " 491 | \n",
- " 1.221200 | \n",
- " \n",
- " \n",
- " 492 | \n",
- " 1.439500 | \n",
- " \n",
- " \n",
- " 493 | \n",
- " 1.528500 | \n",
- " \n",
- " \n",
- " 494 | \n",
- " 1.775500 | \n",
- " \n",
- " \n",
- " 495 | \n",
- " 1.594600 | \n",
- " \n",
- " \n",
- " 496 | \n",
- " 1.560900 | \n",
- " \n",
- " \n",
- " 497 | \n",
- " 1.791400 | \n",
- " \n",
- " \n",
- " 498 | \n",
- " 1.397800 | \n",
- " \n",
- " \n",
- " 499 | \n",
- " 1.740400 | \n",
- " \n",
- " \n",
- " 500 | \n",
- " 1.209500 | \n",
- " \n",
- " \n",
- " 501 | \n",
- " 1.385600 | \n",
- " \n",
- " \n",
- " 502 | \n",
- " 1.062200 | \n",
- " \n",
- " \n",
- " 503 | \n",
- " 1.355400 | \n",
- " \n",
- " \n",
- " 504 | \n",
- " 1.768400 | \n",
- " \n",
- " \n",
- " 505 | \n",
- " 1.225800 | \n",
- " \n",
- " \n",
- " 506 | \n",
- " 1.263000 | \n",
- " \n",
- " \n",
- " 507 | \n",
- " 1.456800 | \n",
- " \n",
- " \n",
- " 508 | \n",
- " 1.314900 | \n",
- " \n",
- " \n",
- " 509 | \n",
- " 1.377100 | \n",
- " \n",
- " \n",
- " 510 | \n",
- " 1.589900 | \n",
- " \n",
- " \n",
- " 511 | \n",
- " 1.439100 | \n",
- " \n",
- " \n",
- " 512 | \n",
- " 1.394000 | \n",
- " \n",
- " \n",
- " 513 | \n",
- " 1.307200 | \n",
- " \n",
- " \n",
- " 514 | \n",
- " 1.466100 | \n",
- " \n",
- " \n",
- " 515 | \n",
- " 1.367400 | \n",
- " \n",
- " \n",
- " 516 | \n",
- " 1.782700 | \n",
- " \n",
- " \n",
- " 517 | \n",
- " 1.335600 | \n",
- " \n",
- " \n",
- " 518 | \n",
- " 1.384600 | \n",
- " \n",
- " \n",
- " 519 | \n",
- " 1.289300 | \n",
- " \n",
- " \n",
- " 520 | \n",
- " 1.386800 | \n",
- " \n",
- " \n",
- " 521 | \n",
- " 1.249500 | \n",
- " \n",
- " \n",
- " 522 | \n",
- " 1.728500 | \n",
- " \n",
- " \n",
- " 523 | \n",
- " 1.524500 | \n",
- " \n",
- " \n",
- " 524 | \n",
- " 1.428600 | \n",
- " \n",
- " \n",
- " 525 | \n",
- " 1.170900 | \n",
- " \n",
- " \n",
- " 526 | \n",
- " 1.681900 | \n",
- " \n",
- " \n",
- " 527 | \n",
- " 1.852700 | \n",
- " \n",
- " \n",
- " 528 | \n",
- " 1.664800 | \n",
- " \n",
- " \n",
- " 529 | \n",
- " 1.413400 | \n",
- " \n",
- " \n",
- " 530 | \n",
- " 1.575700 | \n",
- " \n",
- " \n",
- " 531 | \n",
- " 1.728200 | \n",
- " \n",
- " \n",
- " 532 | \n",
- " 1.336700 | \n",
- " \n",
- " \n",
- " 533 | \n",
- " 1.720700 | \n",
- " \n",
- " \n",
- " 534 | \n",
- " 1.595600 | \n",
- " \n",
- " \n",
- " 535 | \n",
- " 1.270200 | \n",
- " \n",
- " \n",
- " 536 | \n",
- " 1.291800 | \n",
- " \n",
- " \n",
- " 537 | \n",
- " 1.491500 | \n",
- " \n",
- " \n",
- " 538 | \n",
- " 1.836400 | \n",
- " \n",
- " \n",
- " 539 | \n",
- " 1.031600 | \n",
- " \n",
- " \n",
- " 540 | \n",
- " 1.526600 | \n",
- " \n",
- " \n",
- " 541 | \n",
- " 1.660300 | \n",
- " \n",
- " \n",
- " 542 | \n",
- " 1.350900 | \n",
- " \n",
- " \n",
- " 543 | \n",
- " 1.407000 | \n",
- " \n",
- " \n",
- " 544 | \n",
- " 1.463300 | \n",
- " \n",
- " \n",
- " 545 | \n",
- " 2.063900 | \n",
- " \n",
- " \n",
- " 546 | \n",
- " 1.244900 | \n",
- " \n",
- " \n",
- " 547 | \n",
- " 1.768600 | \n",
- " \n",
- " \n",
- " 548 | \n",
- " 1.484100 | \n",
- " \n",
- " \n",
- " 549 | \n",
- " 1.710700 | \n",
- " \n",
- " \n",
- " 550 | \n",
- " 1.859800 | \n",
- " \n",
- " \n",
- " 551 | \n",
- " 1.277100 | \n",
- " \n",
- " \n",
- " 552 | \n",
- " 1.769000 | \n",
- " \n",
- " \n",
- " 553 | \n",
- " 1.948400 | \n",
- " \n",
- " \n",
- " 554 | \n",
- " 1.805500 | \n",
- " \n",
- " \n",
- " 555 | \n",
- " 2.075900 | \n",
- " \n",
- " \n",
- " 556 | \n",
- " 1.129500 | \n",
- " \n",
- " \n",
- " 557 | \n",
- " 1.152000 | \n",
- " \n",
- " \n",
- " 558 | \n",
- " 1.914600 | \n",
- " \n",
- " \n",
- " 559 | \n",
- " 1.250400 | \n",
- " \n",
- " \n",
- " 560 | \n",
- " 1.497500 | \n",
- " \n",
- " \n",
- " 561 | \n",
- " 1.593700 | \n",
- " \n",
- " \n",
- " 562 | \n",
- " 1.610600 | \n",
- " \n",
- " \n",
- " 563 | \n",
- " 1.300700 | \n",
- " \n",
- " \n",
- " 564 | \n",
- " 1.357500 | \n",
- " \n",
- " \n",
- " 565 | \n",
- " 1.227800 | \n",
- " \n",
- " \n",
- " 566 | \n",
- " 1.638200 | \n",
- " \n",
- " \n",
- " 567 | \n",
- " 1.665600 | \n",
- " \n",
- " \n",
- " 568 | \n",
- " 1.277100 | \n",
- " \n",
- " \n",
- " 569 | \n",
- " 1.279300 | \n",
- " \n",
- " \n",
- " 570 | \n",
- " 1.357200 | \n",
- " \n",
- " \n",
- " 571 | \n",
- " 1.219100 | \n",
- " \n",
- " \n",
- " 572 | \n",
- " 1.378900 | \n",
- " \n",
- " \n",
- " 573 | \n",
- " 1.306300 | \n",
- " \n",
- " \n",
- " 574 | \n",
- " 1.673900 | \n",
- " \n",
- " \n",
- " 575 | \n",
- " 1.395800 | \n",
- " \n",
- " \n",
- " 576 | \n",
- " 1.278400 | \n",
- " \n",
- " \n",
- " 577 | \n",
- " 1.794600 | \n",
- " \n",
- " \n",
- " 578 | \n",
- " 1.351700 | \n",
- " \n",
- " \n",
- " 579 | \n",
- " 1.798200 | \n",
- " \n",
- " \n",
- " 580 | \n",
- " 1.687900 | \n",
- " \n",
- " \n",
- " 581 | \n",
- " 1.532900 | \n",
- " \n",
- " \n",
- " 582 | \n",
- " 1.552200 | \n",
- " \n",
- " \n",
- " 583 | \n",
- " 1.116400 | \n",
- " \n",
- " \n",
- " 584 | \n",
- " 1.615600 | \n",
- " \n",
- " \n",
- " 585 | \n",
- " 1.610900 | \n",
- " \n",
- " \n",
- " 586 | \n",
- " 1.367900 | \n",
- " \n",
- " \n",
- " 587 | \n",
- " 1.230200 | \n",
- " \n",
- " \n",
- " 588 | \n",
- " 1.145400 | \n",
- " \n",
- " \n",
- " 589 | \n",
- " 1.199000 | \n",
- " \n",
- " \n",
- " 590 | \n",
- " 1.694700 | \n",
- " \n",
- " \n",
- " 591 | \n",
- " 1.578000 | \n",
- " \n",
- " \n",
- " 592 | \n",
- " 1.340700 | \n",
- " \n",
- " \n",
- " 593 | \n",
- " 1.530900 | \n",
- " \n",
- " \n",
- " 594 | \n",
- " 1.495900 | \n",
- " \n",
- " \n",
- " 595 | \n",
- " 1.540700 | \n",
- " \n",
- " \n",
- " 596 | \n",
- " 1.519800 | \n",
- " \n",
- " \n",
- " 597 | \n",
- " 1.513500 | \n",
- " \n",
- " \n",
- " 598 | \n",
- " 1.302300 | \n",
- " \n",
- " \n",
- " 599 | \n",
- " 1.565300 | \n",
- " \n",
- " \n",
- " 600 | \n",
- " 1.628200 | \n",
- " \n",
- " \n",
- " 601 | \n",
- " 1.244700 | \n",
- " \n",
- " \n",
- " 602 | \n",
- " 1.480900 | \n",
- " \n",
- " \n",
- " 603 | \n",
- " 1.217700 | \n",
- " \n",
- " \n",
- " 604 | \n",
- " 1.417000 | \n",
- " \n",
- " \n",
- " 605 | \n",
- " 1.412500 | \n",
- " \n",
- " \n",
- " 606 | \n",
- " 1.271400 | \n",
- " \n",
- " \n",
- " 607 | \n",
- " 1.465700 | \n",
- " \n",
- " \n",
- " 608 | \n",
- " 1.351600 | \n",
- " \n",
- " \n",
- " 609 | \n",
- " 2.184100 | \n",
- " \n",
- " \n",
- " 610 | \n",
- " 1.668600 | \n",
- " \n",
- " \n",
- " 611 | \n",
- " 1.573500 | \n",
- " \n",
- " \n",
- " 612 | \n",
- " 1.146500 | \n",
- " \n",
- " \n",
- " 613 | \n",
- " 1.460900 | \n",
- " \n",
- " \n",
- " 614 | \n",
- " 2.015100 | \n",
- " \n",
- " \n",
- " 615 | \n",
- " 1.843800 | \n",
- " \n",
- " \n",
- " 616 | \n",
- " 1.539300 | \n",
- " \n",
- " \n",
- " 617 | \n",
- " 1.631000 | \n",
- " \n",
- " \n",
- " 618 | \n",
- " 1.281700 | \n",
- " \n",
- " \n",
- " 619 | \n",
- " 1.026100 | \n",
- " \n",
- " \n",
- " 620 | \n",
- " 1.626800 | \n",
- " \n",
- " \n",
- " 621 | \n",
- " 1.691800 | \n",
- " \n",
- " \n",
- " 622 | \n",
- " 1.194600 | \n",
- " \n",
- " \n",
- " 623 | \n",
- " 1.689400 | \n",
- " \n",
- " \n",
- " 624 | \n",
- " 1.213000 | \n",
- " \n",
- " \n",
- " 625 | \n",
- " 1.371200 | \n",
- " \n",
- " \n",
- " 626 | \n",
- " 1.780900 | \n",
- " \n",
- " \n",
- " 627 | \n",
- " 1.491700 | \n",
- " \n",
- " \n",
- " 628 | \n",
- " 1.341300 | \n",
- " \n",
- " \n",
- " 629 | \n",
- " 1.266200 | \n",
- " \n",
- " \n",
- " 630 | \n",
- " 1.129100 | \n",
- " \n",
- " \n",
- " 631 | \n",
- " 1.422300 | \n",
- " \n",
- " \n",
- " 632 | \n",
- " 1.339000 | \n",
- " \n",
- " \n",
- " 633 | \n",
- " 1.364800 | \n",
- " \n",
- " \n",
- " 634 | \n",
- " 1.196100 | \n",
- " \n",
- " \n",
- " 635 | \n",
- " 1.522000 | \n",
- " \n",
- " \n",
- " 636 | \n",
- " 1.601500 | \n",
- " \n",
- " \n",
- " 637 | \n",
- " 1.464600 | \n",
- " \n",
- " \n",
- " 638 | \n",
- " 1.826800 | \n",
- " \n",
- " \n",
- " 639 | \n",
- " 1.684900 | \n",
- " \n",
- " \n",
- " 640 | \n",
- " 1.434100 | \n",
- " \n",
- " \n",
- " 641 | \n",
- " 1.318800 | \n",
- " \n",
- " \n",
- " 642 | \n",
- " 1.990200 | \n",
- " \n",
- " \n",
- " 643 | \n",
- " 1.540200 | \n",
- " \n",
- " \n",
- " 644 | \n",
- " 1.243100 | \n",
- " \n",
- " \n",
- " 645 | \n",
- " 1.208400 | \n",
- " \n",
- " \n",
- " 646 | \n",
- " 1.669200 | \n",
- " \n",
- " \n",
- " 647 | \n",
- " 1.667100 | \n",
- " \n",
- " \n",
- " 648 | \n",
- " 1.764100 | \n",
- " \n",
- " \n",
- " 649 | \n",
- " 2.274200 | \n",
- " \n",
- " \n",
- " 650 | \n",
- " 1.929500 | \n",
- " \n",
- " \n",
- " 651 | \n",
- " 1.532800 | \n",
- " \n",
- " \n",
- " 652 | \n",
- " 1.949200 | \n",
- " \n",
- " \n",
- " 653 | \n",
- " 1.194300 | \n",
- " \n",
- " \n",
- " 654 | \n",
- " 1.081300 | \n",
- " \n",
- " \n",
- " 655 | \n",
- " 1.703300 | \n",
- " \n",
- " \n",
- " 656 | \n",
- " 1.786600 | \n",
- " \n",
- " \n",
- " 657 | \n",
- " 1.638000 | \n",
- " \n",
- " \n",
- " 658 | \n",
- " 1.452200 | \n",
- " \n",
- " \n",
- " 659 | \n",
- " 1.484700 | \n",
- " \n",
- " \n",
- " 660 | \n",
- " 1.704700 | \n",
- " \n",
- " \n",
- " 661 | \n",
- " 1.414400 | \n",
- " \n",
- " \n",
- " 662 | \n",
- " 1.265200 | \n",
- " \n",
- " \n",
- " 663 | \n",
- " 1.442600 | \n",
- " \n",
- " \n",
- " 664 | \n",
- " 1.787400 | \n",
- " \n",
- " \n",
- " 665 | \n",
- " 1.491300 | \n",
- " \n",
- " \n",
- " 666 | \n",
- " 1.252600 | \n",
- " \n",
- " \n",
- " 667 | \n",
- " 1.486600 | \n",
- " \n",
- " \n",
- " 668 | \n",
- " 1.734800 | \n",
- " \n",
- " \n",
- " 669 | \n",
- " 1.486900 | \n",
- " \n",
- " \n",
- " 670 | \n",
- " 1.394600 | \n",
- " \n",
- " \n",
- " 671 | \n",
- " 1.541100 | \n",
- " \n",
- " \n",
- " 672 | \n",
- " 1.947600 | \n",
- " \n",
- " \n",
- " 673 | \n",
- " 1.548600 | \n",
- " \n",
- " \n",
- " 674 | \n",
- " 1.357000 | \n",
- " \n",
- " \n",
- " 675 | \n",
- " 1.737100 | \n",
- " \n",
- " \n",
- " 676 | \n",
- " 1.911500 | \n",
- " \n",
- " \n",
- " 677 | \n",
- " 1.460300 | \n",
- " \n",
- " \n",
- " 678 | \n",
- " 1.295200 | \n",
- " \n",
- " \n",
- " 679 | \n",
- " 1.480900 | \n",
- " \n",
- " \n",
- " 680 | \n",
- " 1.638200 | \n",
- " \n",
- " \n",
- " 681 | \n",
- " 1.077400 | \n",
- " \n",
- " \n",
- " 682 | \n",
- " 1.665800 | \n",
- " \n",
- " \n",
- " 683 | \n",
- " 1.515100 | \n",
- " \n",
- " \n",
- " 684 | \n",
- " 1.075100 | \n",
- " \n",
- " \n",
- " 685 | \n",
- " 1.205900 | \n",
- " \n",
- " \n",
- " 686 | \n",
- " 1.628200 | \n",
- " \n",
- " \n",
- " 687 | \n",
- " 1.186100 | \n",
- " \n",
- " \n",
- " 688 | \n",
- " 1.170100 | \n",
- " \n",
- " \n",
- " 689 | \n",
- " 1.561000 | \n",
- " \n",
- " \n",
- " 690 | \n",
- " 1.678000 | \n",
- " \n",
- " \n",
- " 691 | \n",
- " 1.413300 | \n",
- " \n",
- " \n",
- " 692 | \n",
- " 1.252300 | \n",
- " \n",
- " \n",
- " 693 | \n",
- " 1.607600 | \n",
- " \n",
- " \n",
- " 694 | \n",
- " 1.710500 | \n",
- " \n",
- " \n",
- " 695 | \n",
- " 1.323000 | \n",
- " \n",
- " \n",
- " 696 | \n",
- " 1.507300 | \n",
- " \n",
- " \n",
- " 697 | \n",
- " 1.679300 | \n",
- " \n",
- " \n",
- " 698 | \n",
- " 1.545000 | \n",
- " \n",
- " \n",
- " 699 | \n",
- " 1.221800 | \n",
- " \n",
- " \n",
- " 700 | \n",
- " 1.493300 | \n",
- " \n",
- " \n",
- " 701 | \n",
- " 1.181700 | \n",
- " \n",
- " \n",
- " 702 | \n",
- " 1.171100 | \n",
- " \n",
- " \n",
- " 703 | \n",
- " 1.686500 | \n",
- " \n",
- " \n",
- " 704 | \n",
- " 1.423300 | \n",
- " \n",
- " \n",
- " 705 | \n",
- " 1.660100 | \n",
- " \n",
- " \n",
- " 706 | \n",
- " 1.263900 | \n",
- " \n",
- " \n",
- " 707 | \n",
- " 1.125800 | \n",
- " \n",
- " \n",
- " 708 | \n",
- " 1.991300 | \n",
- " \n",
- " \n",
- " 709 | \n",
- " 1.165800 | \n",
- " \n",
- " \n",
- " 710 | \n",
- " 1.751300 | \n",
- " \n",
- " \n",
- " 711 | \n",
- " 1.185500 | \n",
- " \n",
- " \n",
- " 712 | \n",
- " 1.643000 | \n",
- " \n",
- " \n",
- " 713 | \n",
- " 1.357500 | \n",
- " \n",
- " \n",
- " 714 | \n",
- " 2.634900 | \n",
- " \n",
- " \n",
- " 715 | \n",
- " 1.853700 | \n",
- " \n",
- " \n",
- " 716 | \n",
- " 1.403100 | \n",
- " \n",
- " \n",
- " 717 | \n",
- " 1.271200 | \n",
- " \n",
- " \n",
- " 718 | \n",
- " 1.794200 | \n",
- " \n",
- " \n",
- " 719 | \n",
- " 1.340800 | \n",
- " \n",
- " \n",
- " 720 | \n",
- " 1.588000 | \n",
- " \n",
- " \n",
- " 721 | \n",
- " 1.327900 | \n",
- " \n",
- " \n",
- " 722 | \n",
- " 1.568700 | \n",
- " \n",
- " \n",
- " 723 | \n",
- " 1.304600 | \n",
- " \n",
- " \n",
- " 724 | \n",
- " 1.843200 | \n",
- " \n",
- " \n",
- " 725 | \n",
- " 1.635400 | \n",
- " \n",
- " \n",
- " 726 | \n",
- " 1.483500 | \n",
- " \n",
- " \n",
- " 727 | \n",
- " 1.584500 | \n",
- " \n",
- " \n",
- " 728 | \n",
- " 1.464600 | \n",
- " \n",
- " \n",
- " 729 | \n",
- " 1.496400 | \n",
- " \n",
- " \n",
- " 730 | \n",
- " 1.813200 | \n",
- " \n",
- " \n",
- " 731 | \n",
- " 1.410100 | \n",
- " \n",
- " \n",
- " 732 | \n",
- " 1.810800 | \n",
- " \n",
- " \n",
- " 733 | \n",
- " 1.155400 | \n",
- " \n",
- " \n",
- " 734 | \n",
- " 1.378800 | \n",
- " \n",
- " \n",
- " 735 | \n",
- " 1.349900 | \n",
- " \n",
- " \n",
- " 736 | \n",
- " 1.917600 | \n",
- " \n",
- " \n",
- " 737 | \n",
- " 1.043300 | \n",
- " \n",
- " \n",
- " 738 | \n",
- " 1.605200 | \n",
- " \n",
- " \n",
- " 739 | \n",
- " 1.224700 | \n",
- " \n",
- " \n",
- " 740 | \n",
- " 1.507200 | \n",
- " \n",
- " \n",
- " 741 | \n",
- " 1.447900 | \n",
- " \n",
- " \n",
- " 742 | \n",
- " 1.591600 | \n",
- " \n",
- " \n",
- " 743 | \n",
- " 2.113700 | \n",
- " \n",
- " \n",
- " 744 | \n",
- " 1.404600 | \n",
- " \n",
- " \n",
- " 745 | \n",
- " 1.592900 | \n",
- " \n",
- " \n",
- " 746 | \n",
- " 1.695800 | \n",
- " \n",
- " \n",
- " 747 | \n",
- " 1.412600 | \n",
- " \n",
- " \n",
- " 748 | \n",
- " 1.391600 | \n",
- " \n",
- " \n",
- " 749 | \n",
- " 1.363000 | \n",
- " \n",
- " \n",
- " 750 | \n",
- " 1.516600 | \n",
- " \n",
- " \n",
- " 751 | \n",
- " 1.384200 | \n",
- " \n",
- " \n",
- " 752 | \n",
- " 1.572800 | \n",
- " \n",
- " \n",
- " 753 | \n",
- " 1.747500 | \n",
- " \n",
- " \n",
- " 754 | \n",
- " 1.254300 | \n",
- " \n",
- " \n",
- " 755 | \n",
- " 1.083300 | \n",
- " \n",
- " \n",
- " 756 | \n",
- " 1.563300 | \n",
- " \n",
- " \n",
- " 757 | \n",
- " 1.572800 | \n",
- " \n",
- " \n",
- " 758 | \n",
- " 1.516600 | \n",
- " \n",
- " \n",
- " 759 | \n",
- " 1.577300 | \n",
- " \n",
- " \n",
- " 760 | \n",
- " 1.028100 | \n",
- " \n",
- " \n",
- " 761 | \n",
- " 1.663800 | \n",
- " \n",
- " \n",
- " 762 | \n",
- " 1.441500 | \n",
- " \n",
- " \n",
- " 763 | \n",
- " 2.225800 | \n",
- " \n",
- " \n",
- " 764 | \n",
- " 2.147200 | \n",
- " \n",
- " \n",
- " 765 | \n",
- " 1.190000 | \n",
- " \n",
- " \n",
- " 766 | \n",
- " 1.563400 | \n",
- " \n",
- " \n",
- " 767 | \n",
- " 1.739800 | \n",
- " \n",
- " \n",
- " 768 | \n",
- " 1.711500 | \n",
- " \n",
- " \n",
- " 769 | \n",
- " 1.489900 | \n",
- " \n",
- " \n",
- " 770 | \n",
- " 1.457400 | \n",
- " \n",
- " \n",
- " 771 | \n",
- " 1.406400 | \n",
- " \n",
- " \n",
- " 772 | \n",
- " 1.829300 | \n",
- " \n",
- " \n",
- " 773 | \n",
- " 1.324700 | \n",
- " \n",
- " \n",
- " 774 | \n",
- " 1.587400 | \n",
- " \n",
- " \n",
- " 775 | \n",
- " 1.433100 | \n",
- " \n",
- " \n",
- " 776 | \n",
- " 1.378400 | \n",
- " \n",
- " \n",
- " 777 | \n",
- " 1.606600 | \n",
- " \n",
- " \n",
- " 778 | \n",
- " 1.879500 | \n",
- " \n",
- " \n",
- " 779 | \n",
- " 1.306400 | \n",
- " \n",
- " \n",
- " 780 | \n",
- " 1.581200 | \n",
- " \n",
- " \n",
- " 781 | \n",
- " 1.278500 | \n",
- " \n",
- " \n",
- " 782 | \n",
- " 1.535900 | \n",
- " \n",
- " \n",
- " 783 | \n",
- " 1.225800 | \n",
- " \n",
- " \n",
- " 784 | \n",
- " 2.003700 | \n",
- " \n",
- " \n",
- " 785 | \n",
- " 1.088100 | \n",
- " \n",
- " \n",
- " 786 | \n",
- " 1.354800 | \n",
- " \n",
- " \n",
- " 787 | \n",
- " 1.332300 | \n",
- " \n",
- " \n",
- " 788 | \n",
- " 1.819000 | \n",
- " \n",
- " \n",
- " 789 | \n",
- " 1.608200 | \n",
- " \n",
- " \n",
- " 790 | \n",
- " 1.327000 | \n",
- " \n",
- " \n",
- " 791 | \n",
- " 1.225600 | \n",
- " \n",
- " \n",
- " 792 | \n",
- " 1.277900 | \n",
- " \n",
- " \n",
- " 793 | \n",
- " 1.327900 | \n",
- " \n",
- " \n",
- " 794 | \n",
- " 1.108800 | \n",
- " \n",
- " \n",
- " 795 | \n",
- " 1.391200 | \n",
- " \n",
- " \n",
- " 796 | \n",
- " 1.240200 | \n",
- " \n",
- " \n",
- " 797 | \n",
- " 1.476700 | \n",
- " \n",
- " \n",
- " 798 | \n",
- " 1.279800 | \n",
- " \n",
- " \n",
- " 799 | \n",
- " 1.272400 | \n",
- " \n",
- " \n",
- " 800 | \n",
- " 1.265800 | \n",
- " \n",
- " \n",
- " 801 | \n",
- " 1.765700 | \n",
- " \n",
- " \n",
- " 802 | \n",
- " 1.198300 | \n",
- " \n",
- " \n",
- " 803 | \n",
- " 1.513900 | \n",
- " \n",
- " \n",
- " 804 | \n",
- " 1.733100 | \n",
- " \n",
- " \n",
- " 805 | \n",
- " 1.162400 | \n",
- " \n",
- " \n",
- " 806 | \n",
- " 1.225300 | \n",
- " \n",
- " \n",
- " 807 | \n",
- " 1.477200 | \n",
- " \n",
- " \n",
- " 808 | \n",
- " 1.258100 | \n",
- " \n",
- " \n",
- " 809 | \n",
- " 1.463000 | \n",
- " \n",
- " \n",
- " 810 | \n",
- " 1.287500 | \n",
- " \n",
- " \n",
- " 811 | \n",
- " 1.286400 | \n",
- " \n",
- " \n",
- " 812 | \n",
- " 2.015000 | \n",
- " \n",
- " \n",
- " 813 | \n",
- " 1.541200 | \n",
- " \n",
- " \n",
- " 814 | \n",
- " 1.361500 | \n",
- " \n",
- " \n",
- " 815 | \n",
- " 1.675500 | \n",
- " \n",
- " \n",
- " 816 | \n",
- " 2.102900 | \n",
- " \n",
- " \n",
- " 817 | \n",
- " 1.497300 | \n",
- " \n",
- " \n",
- " 818 | \n",
- " 1.325800 | \n",
- " \n",
- " \n",
- " 819 | \n",
- " 1.106700 | \n",
- " \n",
- " \n",
- " 820 | \n",
- " 1.995500 | \n",
- " \n",
- " \n",
- " 821 | \n",
- " 1.417900 | \n",
- " \n",
- " \n",
- " 822 | \n",
- " 1.346900 | \n",
- " \n",
- " \n",
- " 823 | \n",
- " 1.236300 | \n",
- " \n",
- " \n",
- " 824 | \n",
- " 1.389600 | \n",
- " \n",
- " \n",
- " 825 | \n",
- " 1.390000 | \n",
- " \n",
- " \n",
- " 826 | \n",
- " 1.554000 | \n",
- " \n",
- " \n",
- " 827 | \n",
- " 1.300400 | \n",
- " \n",
- " \n",
- " 828 | \n",
- " 1.295400 | \n",
- " \n",
- " \n",
- " 829 | \n",
- " 0.997900 | \n",
- " \n",
- " \n",
- " 830 | \n",
- " 1.612000 | \n",
- " \n",
- " \n",
- " 831 | \n",
- " 1.074200 | \n",
- " \n",
- " \n",
- " 832 | \n",
- " 1.533200 | \n",
- " \n",
- " \n",
- " 833 | \n",
- " 1.859500 | \n",
- " \n",
- " \n",
- " 834 | \n",
- " 1.348300 | \n",
- " \n",
- " \n",
- " 835 | \n",
- " 1.154200 | \n",
- " \n",
- " \n",
- " 836 | \n",
- " 1.120100 | \n",
- " \n",
- " \n",
- " 837 | \n",
- " 1.237400 | \n",
- " \n",
- " \n",
- " 838 | \n",
- " 1.442200 | \n",
- " \n",
- " \n",
- " 839 | \n",
- " 1.551300 | \n",
- " \n",
- " \n",
- " 840 | \n",
- " 1.410900 | \n",
- " \n",
- " \n",
- " 841 | \n",
- " 1.100900 | \n",
- " \n",
- " \n",
- " 842 | \n",
- " 1.564200 | \n",
- " \n",
- " \n",
- " 843 | \n",
- " 1.406200 | \n",
- " \n",
- " \n",
- " 844 | \n",
- " 1.343700 | \n",
- " \n",
- " \n",
- " 845 | \n",
- " 1.035800 | \n",
- " \n",
- " \n",
- " 846 | \n",
- " 1.610900 | \n",
- " \n",
- " \n",
- " 847 | \n",
- " 1.361900 | \n",
- " \n",
- " \n",
- " 848 | \n",
- " 1.297900 | \n",
- " \n",
- " \n",
- " 849 | \n",
- " 1.282300 | \n",
- " \n",
- " \n",
- " 850 | \n",
- " 1.441000 | \n",
- " \n",
- " \n",
- " 851 | \n",
- " 1.709000 | \n",
- " \n",
- " \n",
- " 852 | \n",
- " 1.403900 | \n",
- " \n",
- " \n",
- " 853 | \n",
- " 1.521900 | \n",
- " \n",
- " \n",
- " 854 | \n",
- " 1.834800 | \n",
- " \n",
- " \n",
- " 855 | \n",
- " 1.336400 | \n",
- " \n",
- " \n",
- " 856 | \n",
- " 1.626300 | \n",
- " \n",
- " \n",
- " 857 | \n",
- " 1.509100 | \n",
- " \n",
- " \n",
- " 858 | \n",
- " 1.253900 | \n",
- " \n",
- " \n",
- " 859 | \n",
- " 1.510500 | \n",
- " \n",
- " \n",
- " 860 | \n",
- " 1.065700 | \n",
- " \n",
- " \n",
- " 861 | \n",
- " 1.415800 | \n",
- " \n",
- " \n",
- " 862 | \n",
- " 1.461300 | \n",
- " \n",
- " \n",
- " 863 | \n",
- " 1.270700 | \n",
- " \n",
- " \n",
- " 864 | \n",
- " 1.240900 | \n",
- " \n",
- " \n",
- " 865 | \n",
- " 1.191800 | \n",
- " \n",
- " \n",
- " 866 | \n",
- " 1.753400 | \n",
- " \n",
- " \n",
- " 867 | \n",
- " 1.428500 | \n",
- " \n",
- " \n",
- " 868 | \n",
- " 1.065300 | \n",
- " \n",
- " \n",
- " 869 | \n",
- " 1.848800 | \n",
- " \n",
- " \n",
- " 870 | \n",
- " 1.081000 | \n",
- " \n",
- " \n",
- " 871 | \n",
- " 1.730700 | \n",
- " \n",
- " \n",
- " 872 | \n",
- " 1.389900 | \n",
- " \n",
- " \n",
- " 873 | \n",
- " 1.115400 | \n",
- " \n",
- " \n",
- " 874 | \n",
- " 1.822700 | \n",
- " \n",
- " \n",
- " 875 | \n",
- " 1.337400 | \n",
- " \n",
- " \n",
- " 876 | \n",
- " 1.350700 | \n",
- " \n",
- " \n",
- " 877 | \n",
- " 1.734600 | \n",
- " \n",
- " \n",
- " 878 | \n",
- " 1.393500 | \n",
- " \n",
- " \n",
- " 879 | \n",
- " 2.038900 | \n",
- " \n",
- " \n",
- " 880 | \n",
- " 1.410700 | \n",
- " \n",
- " \n",
- " 881 | \n",
- " 1.389000 | \n",
- " \n",
- " \n",
- " 882 | \n",
- " 1.274000 | \n",
- " \n",
- " \n",
- " 883 | \n",
- " 1.177900 | \n",
- " \n",
- " \n",
- " 884 | \n",
- " 1.888800 | \n",
- " \n",
- " \n",
- " 885 | \n",
- " 1.646000 | \n",
- " \n",
- " \n",
- " 886 | \n",
- " 1.487500 | \n",
- " \n",
- " \n",
- " 887 | \n",
- " 1.067000 | \n",
- " \n",
- " \n",
- " 888 | \n",
- " 1.575100 | \n",
- " \n",
- " \n",
- " 889 | \n",
- " 1.559200 | \n",
- " \n",
- " \n",
- " 890 | \n",
- " 1.549200 | \n",
- " \n",
- " \n",
- " 891 | \n",
- " 1.540300 | \n",
- " \n",
- " \n",
- " 892 | \n",
- " 1.419300 | \n",
- " \n",
- " \n",
- " 893 | \n",
- " 1.712500 | \n",
- " \n",
- " \n",
- " 894 | \n",
- " 1.350700 | \n",
- " \n",
- " \n",
- " 895 | \n",
- " 1.752100 | \n",
- " \n",
- " \n",
- " 896 | \n",
- " 1.261200 | \n",
- " \n",
- " \n",
- " 897 | \n",
- " 1.434600 | \n",
- " \n",
- " \n",
- " 898 | \n",
- " 1.274000 | \n",
- " \n",
- " \n",
- " 899 | \n",
- " 1.536000 | \n",
- " \n",
- " \n",
- " 900 | \n",
- " 1.542900 | \n",
- " \n",
- " \n",
- " 901 | \n",
- " 1.209600 | \n",
- " \n",
- " \n",
- " 902 | \n",
- " 1.548400 | \n",
- " \n",
- " \n",
- " 903 | \n",
- " 2.120500 | \n",
- " \n",
- " \n",
- " 904 | \n",
- " 1.336600 | \n",
- " \n",
- " \n",
- " 905 | \n",
- " 1.544500 | \n",
- " \n",
- " \n",
- " 906 | \n",
- " 1.206500 | \n",
- " \n",
- " \n",
- " 907 | \n",
- " 1.657200 | \n",
- " \n",
- " \n",
- " 908 | \n",
- " 1.786100 | \n",
- " \n",
- " \n",
- " 909 | \n",
- " 1.586900 | \n",
- " \n",
- " \n",
- " 910 | \n",
- " 1.827000 | \n",
- " \n",
- " \n",
- " 911 | \n",
- " 1.245700 | \n",
- " \n",
- " \n",
- " 912 | \n",
- " 1.145600 | \n",
- " \n",
- " \n",
- " 913 | \n",
- " 2.626100 | \n",
- " \n",
- " \n",
- " 914 | \n",
- " 1.461700 | \n",
- " \n",
- " \n",
- " 915 | \n",
- " 1.441800 | \n",
- " \n",
- " \n",
- " 916 | \n",
- " 1.404300 | \n",
- " \n",
- " \n",
- " 917 | \n",
- " 1.342300 | \n",
- " \n",
- " \n",
- " 918 | \n",
- " 1.377500 | \n",
- " \n",
- " \n",
- " 919 | \n",
- " 1.206200 | \n",
- " \n",
- " \n",
- " 920 | \n",
- " 2.012700 | \n",
- " \n",
- " \n",
- " 921 | \n",
- " 1.423500 | \n",
- " \n",
- " \n",
- " 922 | \n",
- " 1.192800 | \n",
- " \n",
- " \n",
- " 923 | \n",
- " 1.137000 | \n",
- " \n",
- " \n",
- " 924 | \n",
- " 1.858500 | \n",
- " \n",
- " \n",
- " 925 | \n",
- " 1.419500 | \n",
- " \n",
- " \n",
- " 926 | \n",
- " 1.384400 | \n",
- " \n",
- " \n",
- " 927 | \n",
- " 1.302900 | \n",
- " \n",
- " \n",
- " 928 | \n",
- " 1.399100 | \n",
- " \n",
- " \n",
- " 929 | \n",
- " 1.561600 | \n",
- " \n",
- " \n",
- " 930 | \n",
- " 1.058800 | \n",
- " \n",
- " \n",
- " 931 | \n",
- " 1.486500 | \n",
- " \n",
- " \n",
- " 932 | \n",
- " 1.497200 | \n",
- " \n",
- " \n",
- " 933 | \n",
- " 1.427400 | \n",
- " \n",
- " \n",
- " 934 | \n",
- " 1.555000 | \n",
- " \n",
- " \n",
- " 935 | \n",
- " 1.311100 | \n",
- " \n",
- " \n",
- " 936 | \n",
- " 1.726100 | \n",
- " \n",
- " \n",
- " 937 | \n",
- " 1.289000 | \n",
- " \n",
- " \n",
- " 938 | \n",
- " 1.301300 | \n",
- " \n",
- " \n",
- " 939 | \n",
- " 1.256300 | \n",
- " \n",
- " \n",
- " 940 | \n",
- " 1.718900 | \n",
- " \n",
- " \n",
- " 941 | \n",
- " 1.212500 | \n",
- " \n",
- " \n",
- " 942 | \n",
- " 1.311300 | \n",
- " \n",
- " \n",
- " 943 | \n",
- " 2.020900 | \n",
- " \n",
- " \n",
- " 944 | \n",
- " 1.301500 | \n",
- " \n",
- " \n",
- " 945 | \n",
- " 1.505000 | \n",
- " \n",
- " \n",
- " 946 | \n",
- " 1.237800 | \n",
- " \n",
- " \n",
- " 947 | \n",
- " 1.695500 | \n",
- " \n",
- " \n",
- " 948 | \n",
- " 1.220300 | \n",
- " \n",
- " \n",
- " 949 | \n",
- " 1.371200 | \n",
- " \n",
- " \n",
- " 950 | \n",
- " 1.465800 | \n",
- " \n",
- " \n",
- " 951 | \n",
- " 1.393900 | \n",
- " \n",
- " \n",
- " 952 | \n",
- " 1.552600 | \n",
- " \n",
- " \n",
- " 953 | \n",
- " 1.494400 | \n",
- " \n",
- " \n",
- " 954 | \n",
- " 1.475600 | \n",
- " \n",
- " \n",
- " 955 | \n",
- " 1.151900 | \n",
- " \n",
- " \n",
- " 956 | \n",
- " 1.538300 | \n",
- " \n",
- " \n",
- " 957 | \n",
- " 1.274300 | \n",
- " \n",
- " \n",
- " 958 | \n",
- " 1.254600 | \n",
- " \n",
- " \n",
- " 959 | \n",
- " 1.485200 | \n",
- " \n",
- " \n",
- " 960 | \n",
- " 1.351000 | \n",
- " \n",
- " \n",
- " 961 | \n",
- " 1.379900 | \n",
- " \n",
- " \n",
- " 962 | \n",
- " 1.929800 | \n",
- " \n",
- " \n",
- " 963 | \n",
- " 1.618700 | \n",
- " \n",
- " \n",
- " 964 | \n",
- " 2.524200 | \n",
- " \n",
- " \n",
- " 965 | \n",
- " 1.339300 | \n",
- " \n",
- " \n",
- " 966 | \n",
- " 1.133800 | \n",
- " \n",
- " \n",
- " 967 | \n",
- " 1.306300 | \n",
- " \n",
- " \n",
- " 968 | \n",
- " 1.940100 | \n",
- " \n",
- " \n",
- " 969 | \n",
- " 1.781500 | \n",
- " \n",
- " \n",
- " 970 | \n",
- " 1.331300 | \n",
- " \n",
- " \n",
- " 971 | \n",
- " 1.667500 | \n",
- " \n",
- " \n",
- " 972 | \n",
- " 1.111500 | \n",
- " \n",
- " \n",
- " 973 | \n",
- " 1.619100 | \n",
- " \n",
- " \n",
- " 974 | \n",
- " 1.439200 | \n",
- " \n",
- " \n",
- " 975 | \n",
- " 1.011600 | \n",
- " \n",
- " \n",
- " 976 | \n",
- " 1.163300 | \n",
- " \n",
- " \n",
- " 977 | \n",
- " 1.780100 | \n",
- " \n",
- " \n",
- " 978 | \n",
- " 1.316300 | \n",
- " \n",
- " \n",
- " 979 | \n",
- " 1.294600 | \n",
- " \n",
- " \n",
- " 980 | \n",
- " 1.178600 | \n",
- " \n",
- " \n",
- " 981 | \n",
- " 1.461700 | \n",
- " \n",
- " \n",
- " 982 | \n",
- " 1.427500 | \n",
- " \n",
- " \n",
- " 983 | \n",
- " 1.259800 | \n",
- " \n",
- " \n",
- " 984 | \n",
- " 1.858700 | \n",
- " \n",
- " \n",
- " 985 | \n",
- " 1.791300 | \n",
- " \n",
- " \n",
- " 986 | \n",
- " 1.220500 | \n",
- " \n",
- " \n",
- " 987 | \n",
- " 1.316500 | \n",
- " \n",
- " \n",
- " 988 | \n",
- " 1.131000 | \n",
- " \n",
- " \n",
- " 989 | \n",
- " 1.311100 | \n",
- " \n",
- " \n",
- " 990 | \n",
- " 1.336700 | \n",
- " \n",
- " \n",
- " 991 | \n",
- " 1.160000 | \n",
- " \n",
- " \n",
- " 992 | \n",
- " 1.800800 | \n",
- " \n",
- " \n",
- " 993 | \n",
- " 1.271700 | \n",
- " \n",
- " \n",
- " 994 | \n",
- " 1.853600 | \n",
- " \n",
- " \n",
- " 995 | \n",
- " 1.378400 | \n",
- " \n",
- " \n",
- " 996 | \n",
- " 1.437100 | \n",
- " \n",
- " \n",
- " 997 | \n",
- " 1.333300 | \n",
- " \n",
- " \n",
- " 998 | \n",
- " 1.166500 | \n",
- " \n",
- " \n",
- " 999 | \n",
- " 1.269800 | \n",
- " \n",
- " \n",
- " 1000 | \n",
- " 1.610900 | \n",
- " \n",
- " \n",
- " 1001 | \n",
- " 1.289500 | \n",
- " \n",
- " \n",
- " 1002 | \n",
- " 1.112500 | \n",
- " \n",
- " \n",
- " 1003 | \n",
- " 1.724400 | \n",
- " \n",
- " \n",
- " 1004 | \n",
- " 1.691700 | \n",
- " \n",
- " \n",
- " 1005 | \n",
- " 1.222600 | \n",
- " \n",
- " \n",
- " 1006 | \n",
- " 1.334900 | \n",
- " \n",
- " \n",
- " 1007 | \n",
- " 1.215500 | \n",
- " \n",
- " \n",
- " 1008 | \n",
- " 1.903400 | \n",
- " \n",
- " \n",
- " 1009 | \n",
- " 1.353200 | \n",
- " \n",
- " \n",
- " 1010 | \n",
- " 1.596800 | \n",
- " \n",
- " \n",
- " 1011 | \n",
- " 1.202200 | \n",
- " \n",
- " \n",
- " 1012 | \n",
- " 1.346700 | \n",
- " \n",
- " \n",
- " 1013 | \n",
- " 1.326600 | \n",
- " \n",
- " \n",
- " 1014 | \n",
- " 1.306600 | \n",
- " \n",
- " \n",
- " 1015 | \n",
- " 2.119000 | \n",
- " \n",
- " \n",
- " 1016 | \n",
- " 1.609300 | \n",
- " \n",
- " \n",
- " 1017 | \n",
- " 1.680300 | \n",
- " \n",
- " \n",
- " 1018 | \n",
- " 1.040800 | \n",
- " \n",
- " \n",
- " 1019 | \n",
- " 2.032100 | \n",
- " \n",
- " \n",
- " 1020 | \n",
- " 1.320300 | \n",
- " \n",
- " \n",
- " 1021 | \n",
- " 1.080100 | \n",
- " \n",
- " \n",
- " 1022 | \n",
- " 1.722700 | \n",
- " \n",
- " \n",
- " 1023 | \n",
- " 1.397200 | \n",
- " \n",
- " \n",
- " 1024 | \n",
- " 1.408400 | \n",
- " \n",
- " \n",
- " 1025 | \n",
- " 1.321100 | \n",
- " \n",
- " \n",
- " 1026 | \n",
- " 1.503500 | \n",
- " \n",
- " \n",
- " 1027 | \n",
- " 1.384200 | \n",
- " \n",
- " \n",
- " 1028 | \n",
- " 1.466300 | \n",
- " \n",
- " \n",
- " 1029 | \n",
- " 1.999200 | \n",
- " \n",
- " \n",
- " 1030 | \n",
- " 1.522700 | \n",
- " \n",
- " \n",
- " 1031 | \n",
- " 1.206000 | \n",
- " \n",
- " \n",
- " 1032 | \n",
- " 1.448000 | \n",
- " \n",
- " \n",
- " 1033 | \n",
- " 1.549400 | \n",
- " \n",
- " \n",
- " 1034 | \n",
- " 1.835900 | \n",
- " \n",
- " \n",
- " 1035 | \n",
- " 1.354500 | \n",
- " \n",
- " \n",
- " 1036 | \n",
- " 1.361400 | \n",
- " \n",
- " \n",
- " 1037 | \n",
- " 1.382400 | \n",
- " \n",
- " \n",
- " 1038 | \n",
- " 1.966800 | \n",
- " \n",
- " \n",
- " 1039 | \n",
- " 1.604800 | \n",
- " \n",
- " \n",
- " 1040 | \n",
- " 1.461500 | \n",
- " \n",
- " \n",
- " 1041 | \n",
- " 1.213500 | \n",
- " \n",
- " \n",
- " 1042 | \n",
- " 1.228800 | \n",
- " \n",
- " \n",
- " 1043 | \n",
- " 0.991400 | \n",
- " \n",
- " \n",
- " 1044 | \n",
- " 1.196600 | \n",
- " \n",
- " \n",
- " 1045 | \n",
- " 1.400300 | \n",
- " \n",
- " \n",
- " 1046 | \n",
- " 1.420000 | \n",
- " \n",
- " \n",
- " 1047 | \n",
- " 1.525200 | \n",
- " \n",
- " \n",
- " 1048 | \n",
- " 1.411400 | \n",
- " \n",
- " \n",
- " 1049 | \n",
- " 1.460500 | \n",
- " \n",
- " \n",
- " 1050 | \n",
- " 1.420600 | \n",
- " \n",
- " \n",
- " 1051 | \n",
- " 1.494700 | \n",
- " \n",
- " \n",
- " 1052 | \n",
- " 1.551000 | \n",
- " \n",
- " \n",
- " 1053 | \n",
- " 1.313700 | \n",
- " \n",
- " \n",
- " 1054 | \n",
- " 1.379600 | \n",
- " \n",
- " \n",
- " 1055 | \n",
- " 1.488500 | \n",
- " \n",
- " \n",
- " 1056 | \n",
- " 1.287200 | \n",
- " \n",
- " \n",
- " 1057 | \n",
- " 1.806800 | \n",
- " \n",
- " \n",
- " 1058 | \n",
- " 1.338600 | \n",
- " \n",
- " \n",
- " 1059 | \n",
- " 1.134000 | \n",
- " \n",
- " \n",
- " 1060 | \n",
- " 1.426300 | \n",
- " \n",
- " \n",
- " 1061 | \n",
- " 1.611300 | \n",
- " \n",
- " \n",
- " 1062 | \n",
- " 1.382200 | \n",
- " \n",
- " \n",
- " 1063 | \n",
- " 2.067200 | \n",
- " \n",
- " \n",
- " 1064 | \n",
- " 1.176700 | \n",
- " \n",
- " \n",
- " 1065 | \n",
- " 1.128700 | \n",
- " \n",
- " \n",
- " 1066 | \n",
- " 1.119900 | \n",
- " \n",
- " \n",
- " 1067 | \n",
- " 1.895900 | \n",
- " \n",
- " \n",
- " 1068 | \n",
- " 1.778500 | \n",
- " \n",
- " \n",
- " 1069 | \n",
- " 1.480700 | \n",
- " \n",
- " \n",
- " 1070 | \n",
- " 1.344300 | \n",
- " \n",
- " \n",
- " 1071 | \n",
- " 1.535200 | \n",
- " \n",
- " \n",
- " 1072 | \n",
- " 1.550700 | \n",
- " \n",
- " \n",
- " 1073 | \n",
- " 1.289900 | \n",
- " \n",
- " \n",
- " 1074 | \n",
- " 1.590300 | \n",
- " \n",
- " \n",
- " 1075 | \n",
- " 1.492500 | \n",
- " \n",
- " \n",
- " 1076 | \n",
- " 1.674200 | \n",
- " \n",
- " \n",
- " 1077 | \n",
- " 1.299800 | \n",
- " \n",
- " \n",
- " 1078 | \n",
- " 1.476000 | \n",
- " \n",
- " \n",
- " 1079 | \n",
- " 1.461400 | \n",
- " \n",
- " \n",
- " 1080 | \n",
- " 1.435700 | \n",
- " \n",
- " \n",
- " 1081 | \n",
- " 1.338900 | \n",
- " \n",
- " \n",
- " 1082 | \n",
- " 1.746200 | \n",
- " \n",
- " \n",
- " 1083 | \n",
- " 1.885400 | \n",
- " \n",
- " \n",
- " 1084 | \n",
- " 1.761700 | \n",
- " \n",
- " \n",
- " 1085 | \n",
- " 1.308700 | \n",
- " \n",
- " \n",
- " 1086 | \n",
- " 1.307000 | \n",
- " \n",
- " \n",
- " 1087 | \n",
- " 1.316900 | \n",
- " \n",
- " \n",
- " 1088 | \n",
- " 1.603100 | \n",
- " \n",
- " \n",
- " 1089 | \n",
- " 1.658300 | \n",
- " \n",
- " \n",
- " 1090 | \n",
- " 1.408300 | \n",
- " \n",
- " \n",
- " 1091 | \n",
- " 1.949200 | \n",
- " \n",
- " \n",
- " 1092 | \n",
- " 1.438600 | \n",
- " \n",
- " \n",
- " 1093 | \n",
- " 1.185700 | \n",
- " \n",
- " \n",
- " 1094 | \n",
- " 1.747400 | \n",
- " \n",
- " \n",
- " 1095 | \n",
- " 1.380200 | \n",
- " \n",
- " \n",
- " 1096 | \n",
- " 1.158500 | \n",
- " \n",
- " \n",
- " 1097 | \n",
- " 1.666300 | \n",
- " \n",
- " \n",
- " 1098 | \n",
- " 1.125300 | \n",
- " \n",
- " \n",
- " 1099 | \n",
- " 2.101900 | \n",
- " \n",
- " \n",
- " 1100 | \n",
- " 1.879300 | \n",
- " \n",
- " \n",
- " 1101 | \n",
- " 1.678000 | \n",
- " \n",
- " \n",
- " 1102 | \n",
- " 1.548500 | \n",
- " \n",
- " \n",
- " 1103 | \n",
- " 1.427300 | \n",
- " \n",
- " \n",
- " 1104 | \n",
- " 2.457600 | \n",
- " \n",
- " \n",
- " 1105 | \n",
- " 1.466800 | \n",
- " \n",
- " \n",
- " 1106 | \n",
- " 1.528700 | \n",
- " \n",
- " \n",
- " 1107 | \n",
- " 1.625600 | \n",
- " \n",
- " \n",
- " 1108 | \n",
- " 1.894700 | \n",
- " \n",
- " \n",
- " 1109 | \n",
- " 1.312800 | \n",
- " \n",
- " \n",
- " 1110 | \n",
- " 1.518700 | \n",
- " \n",
- " \n",
- " 1111 | \n",
- " 1.514100 | \n",
- " \n",
- " \n",
- " 1112 | \n",
- " 2.010600 | \n",
- " \n",
- " \n",
- " 1113 | \n",
- " 1.466800 | \n",
- " \n",
- " \n",
- " 1114 | \n",
- " 1.521000 | \n",
- " \n",
- " \n",
- " 1115 | \n",
- " 1.305200 | \n",
- " \n",
- " \n",
- " 1116 | \n",
- " 1.599000 | \n",
- " \n",
- " \n",
- " 1117 | \n",
- " 1.804800 | \n",
- " \n",
- " \n",
- " 1118 | \n",
- " 1.336100 | \n",
- " \n",
- " \n",
- " 1119 | \n",
- " 1.254600 | \n",
- " \n",
- " \n",
- " 1120 | \n",
- " 1.398800 | \n",
- " \n",
- " \n",
- " 1121 | \n",
- " 1.063300 | \n",
- " \n",
- " \n",
- " 1122 | \n",
- " 1.207000 | \n",
- " \n",
- " \n",
- " 1123 | \n",
- " 1.495300 | \n",
- " \n",
- " \n",
- " 1124 | \n",
- " 1.231300 | \n",
- " \n",
- " \n",
- " 1125 | \n",
- " 1.728200 | \n",
- " \n",
- " \n",
- " 1126 | \n",
- " 2.126300 | \n",
- " \n",
- " \n",
- " 1127 | \n",
- " 2.018500 | \n",
- " \n",
- " \n",
- " 1128 | \n",
- " 1.624200 | \n",
- " \n",
- " \n",
- " 1129 | \n",
- " 1.161500 | \n",
- " \n",
- " \n",
- " 1130 | \n",
- " 1.503800 | \n",
- " \n",
- " \n",
- " 1131 | \n",
- " 1.332400 | \n",
- " \n",
- " \n",
- " 1132 | \n",
- " 1.562900 | \n",
- " \n",
- " \n",
- " 1133 | \n",
- " 1.580200 | \n",
- " \n",
- " \n",
- " 1134 | \n",
- " 1.498400 | \n",
- " \n",
- " \n",
- " 1135 | \n",
- " 1.512900 | \n",
- " \n",
- " \n",
- " 1136 | \n",
- " 1.405900 | \n",
- " \n",
- " \n",
- " 1137 | \n",
- " 1.751200 | \n",
- " \n",
- " \n",
- " 1138 | \n",
- " 1.314200 | \n",
- " \n",
- " \n",
- " 1139 | \n",
- " 1.039400 | \n",
- " \n",
- " \n",
- " 1140 | \n",
- " 1.476400 | \n",
- " \n",
- " \n",
- " 1141 | \n",
- " 1.444100 | \n",
- " \n",
- " \n",
- " 1142 | \n",
- " 1.300000 | \n",
- " \n",
- " \n",
- " 1143 | \n",
- " 1.718400 | \n",
- " \n",
- " \n",
- " 1144 | \n",
- " 1.544500 | \n",
- " \n",
- " \n",
- " 1145 | \n",
- " 1.687100 | \n",
- " \n",
- " \n",
- " 1146 | \n",
- " 1.323000 | \n",
- " \n",
- " \n",
- " 1147 | \n",
- " 1.182300 | \n",
- " \n",
- " \n",
- " 1148 | \n",
- " 1.496600 | \n",
- " \n",
- " \n",
- " 1149 | \n",
- " 1.649600 | \n",
- " \n",
- " \n",
- " 1150 | \n",
- " 1.240100 | \n",
- " \n",
- " \n",
- " 1151 | \n",
- " 1.802500 | \n",
- " \n",
- " \n",
- " 1152 | \n",
- " 1.696200 | \n",
- " \n",
- " \n",
- " 1153 | \n",
- " 1.507300 | \n",
- " \n",
- " \n",
- " 1154 | \n",
- " 1.295000 | \n",
- " \n",
- " \n",
- " 1155 | \n",
- " 1.589200 | \n",
- " \n",
- " \n",
- " 1156 | \n",
- " 1.376600 | \n",
- " \n",
- " \n",
- " 1157 | \n",
- " 1.524900 | \n",
- " \n",
- " \n",
- " 1158 | \n",
- " 1.631700 | \n",
- " \n",
- " \n",
- " 1159 | \n",
- " 1.017000 | \n",
- " \n",
- " \n",
- " 1160 | \n",
- " 1.094400 | \n",
- " \n",
- " \n",
- " 1161 | \n",
- " 1.613600 | \n",
- " \n",
- " \n",
- " 1162 | \n",
- " 1.334200 | \n",
- " \n",
- " \n",
- " 1163 | \n",
- " 1.955000 | \n",
- " \n",
- " \n",
- " 1164 | \n",
- " 1.406800 | \n",
- " \n",
- " \n",
- " 1165 | \n",
- " 1.483400 | \n",
- " \n",
- " \n",
- " 1166 | \n",
- " 1.711400 | \n",
- " \n",
- " \n",
- " 1167 | \n",
- " 1.293600 | \n",
- " \n",
- " \n",
- " 1168 | \n",
- " 1.297100 | \n",
- " \n",
- " \n",
- " 1169 | \n",
- " 1.654000 | \n",
- " \n",
- " \n",
- " 1170 | \n",
- " 1.539000 | \n",
- " \n",
- " \n",
- " 1171 | \n",
- " 1.529700 | \n",
- " \n",
- " \n",
- " 1172 | \n",
- " 1.385300 | \n",
- " \n",
- " \n",
- " 1173 | \n",
- " 1.089500 | \n",
- " \n",
- " \n",
- " 1174 | \n",
- " 1.307900 | \n",
- " \n",
- " \n",
- " 1175 | \n",
- " 1.504800 | \n",
- " \n",
- " \n",
- " 1176 | \n",
- " 1.451600 | \n",
- " \n",
- " \n",
- " 1177 | \n",
- " 1.484700 | \n",
- " \n",
- " \n",
- " 1178 | \n",
- " 1.412200 | \n",
- " \n",
- " \n",
- " 1179 | \n",
- " 1.428500 | \n",
- " \n",
- " \n",
- " 1180 | \n",
- " 1.376700 | \n",
- " \n",
- " \n",
- " 1181 | \n",
- " 1.706000 | \n",
- " \n",
- " \n",
- " 1182 | \n",
- " 1.187800 | \n",
- " \n",
- " \n",
- " 1183 | \n",
- " 1.530900 | \n",
- " \n",
- " \n",
- " 1184 | \n",
- " 1.286400 | \n",
- " \n",
- " \n",
- " 1185 | \n",
- " 1.724400 | \n",
- " \n",
- " \n",
- " 1186 | \n",
- " 1.609100 | \n",
- " \n",
- " \n",
- " 1187 | \n",
- " 1.617900 | \n",
- " \n",
- " \n",
- " 1188 | \n",
- " 1.065000 | \n",
- " \n",
- " \n",
- " 1189 | \n",
- " 1.117100 | \n",
- " \n",
- " \n",
- " 1190 | \n",
- " 1.956700 | \n",
- " \n",
- " \n",
- " 1191 | \n",
- " 1.354700 | \n",
- " \n",
- " \n",
- " 1192 | \n",
- " 1.865100 | \n",
- " \n",
- " \n",
- " 1193 | \n",
- " 2.131100 | \n",
- " \n",
- " \n",
- " 1194 | \n",
- " 1.591400 | \n",
- " \n",
- " \n",
- " 1195 | \n",
- " 1.849500 | \n",
- " \n",
- " \n",
- " 1196 | \n",
- " 1.525500 | \n",
- " \n",
- " \n",
- " 1197 | \n",
- " 1.450900 | \n",
- " \n",
- " \n",
- " 1198 | \n",
- " 1.307400 | \n",
- " \n",
- " \n",
- " 1199 | \n",
- " 1.872700 | \n",
- " \n",
- " \n",
- " 1200 | \n",
- " 1.588200 | \n",
- " \n",
- " \n",
- " 1201 | \n",
- " 1.449100 | \n",
- " \n",
- " \n",
- " 1202 | \n",
- " 1.411400 | \n",
- " \n",
- " \n",
- " 1203 | \n",
- " 1.585400 | \n",
- " \n",
- " \n",
- " 1204 | \n",
- " 1.290300 | \n",
- " \n",
- " \n",
- " 1205 | \n",
- " 1.147200 | \n",
- " \n",
- " \n",
- " 1206 | \n",
- " 1.840600 | \n",
- " \n",
- " \n",
- " 1207 | \n",
- " 1.325800 | \n",
- " \n",
- " \n",
- " 1208 | \n",
- " 1.216900 | \n",
- " \n",
- " \n",
- " 1209 | \n",
- " 1.902600 | \n",
- " \n",
- " \n",
- " 1210 | \n",
- " 1.520800 | \n",
- " \n",
- " \n",
- " 1211 | \n",
- " 1.263300 | \n",
- " \n",
- " \n",
- " 1212 | \n",
- " 1.249300 | \n",
- " \n",
- " \n",
- " 1213 | \n",
- " 1.093500 | \n",
- " \n",
- " \n",
- " 1214 | \n",
- " 1.435600 | \n",
- " \n",
- " \n",
- " 1215 | \n",
- " 1.266300 | \n",
- " \n",
- " \n",
- " 1216 | \n",
- " 1.614300 | \n",
- " \n",
- " \n",
- " 1217 | \n",
- " 1.778400 | \n",
- " \n",
- " \n",
- " 1218 | \n",
- " 1.526800 | \n",
- " \n",
- " \n",
- " 1219 | \n",
- " 1.430300 | \n",
- " \n",
- " \n",
- " 1220 | \n",
- " 1.375500 | \n",
- " \n",
- " \n",
- " 1221 | \n",
- " 1.417200 | \n",
- " \n",
- " \n",
- " 1222 | \n",
- " 1.565500 | \n",
- " \n",
- " \n",
- " 1223 | \n",
- " 1.168900 | \n",
- " \n",
- " \n",
- " 1224 | \n",
- " 1.239800 | \n",
- " \n",
- " \n",
- " 1225 | \n",
- " 1.166800 | \n",
- " \n",
- " \n",
- " 1226 | \n",
- " 1.398100 | \n",
- " \n",
- " \n",
- " 1227 | \n",
- " 1.797500 | \n",
- " \n",
- " \n",
- " 1228 | \n",
- " 1.994600 | \n",
- " \n",
- " \n",
- " 1229 | \n",
- " 1.690400 | \n",
- " \n",
- " \n",
- " 1230 | \n",
- " 1.449900 | \n",
- " \n",
- " \n",
- " 1231 | \n",
- " 1.287500 | \n",
- " \n",
- " \n",
- " 1232 | \n",
- " 1.498600 | \n",
- " \n",
- " \n",
- " 1233 | \n",
- " 1.461200 | \n",
- " \n",
- " \n",
- " 1234 | \n",
- " 1.885600 | \n",
- " \n",
- " \n",
- " 1235 | \n",
- " 1.407800 | \n",
- " \n",
- " \n",
- " 1236 | \n",
- " 1.654600 | \n",
- " \n",
- " \n",
- " 1237 | \n",
- " 1.026400 | \n",
- " \n",
- " \n",
- " 1238 | \n",
- " 1.328800 | \n",
- " \n",
- " \n",
- " 1239 | \n",
- " 1.286100 | \n",
- " \n",
- " \n",
- " 1240 | \n",
- " 1.599900 | \n",
- " \n",
- " \n",
- " 1241 | \n",
- " 1.119900 | \n",
- " \n",
- " \n",
- " 1242 | \n",
- " 1.882000 | \n",
- " \n",
- " \n",
- " 1243 | \n",
- " 1.423000 | \n",
- " \n",
- " \n",
- " 1244 | \n",
- " 1.220800 | \n",
- " \n",
- " \n",
- " 1245 | \n",
- " 1.370100 | \n",
- " \n",
- " \n",
- " 1246 | \n",
- " 1.252100 | \n",
- " \n",
- " \n",
- " 1247 | \n",
- " 1.357900 | \n",
- " \n",
- " \n",
- " 1248 | \n",
- " 1.383800 | \n",
- " \n",
- " \n",
- " 1249 | \n",
- " 1.654400 | \n",
- " \n",
- " \n",
- " 1250 | \n",
- " 1.593600 | \n",
- " \n",
- " \n",
- " 1251 | \n",
- " 1.137000 | \n",
- " \n",
- " \n",
- " 1252 | \n",
- " 1.604400 | \n",
- " \n",
- " \n",
- " 1253 | \n",
- " 1.332700 | \n",
- " \n",
- " \n",
- " 1254 | \n",
- " 1.173700 | \n",
- " \n",
- " \n",
- " 1255 | \n",
- " 1.276600 | \n",
- " \n",
- " \n",
- " 1256 | \n",
- " 1.261000 | \n",
- " \n",
- " \n",
- " 1257 | \n",
- " 1.435400 | \n",
- " \n",
- " \n",
- " 1258 | \n",
- " 1.003500 | \n",
- " \n",
- " \n",
- " 1259 | \n",
- " 1.403300 | \n",
- " \n",
- " \n",
- " 1260 | \n",
- " 1.775300 | \n",
- " \n",
- " \n",
- " 1261 | \n",
- " 1.873000 | \n",
- " \n",
- " \n",
- " 1262 | \n",
- " 2.009900 | \n",
- " \n",
- " \n",
- " 1263 | \n",
- " 1.677300 | \n",
- " \n",
- " \n",
- " 1264 | \n",
- " 1.659600 | \n",
- " \n",
- " \n",
- " 1265 | \n",
- " 1.565400 | \n",
- " \n",
- " \n",
- " 1266 | \n",
- " 1.737200 | \n",
- " \n",
- " \n",
- " 1267 | \n",
- " 1.250500 | \n",
- " \n",
- " \n",
- " 1268 | \n",
- " 1.790900 | \n",
- " \n",
- " \n",
- " 1269 | \n",
- " 1.344100 | \n",
- " \n",
- " \n",
- " 1270 | \n",
- " 1.609300 | \n",
- " \n",
- " \n",
- " 1271 | \n",
- " 1.532600 | \n",
- " \n",
- " \n",
- " 1272 | \n",
- " 1.511800 | \n",
- " \n",
- " \n",
- " 1273 | \n",
- " 1.218100 | \n",
- " \n",
- " \n",
- " 1274 | \n",
- " 1.897000 | \n",
- " \n",
- " \n",
- " 1275 | \n",
- " 1.576700 | \n",
- " \n",
- " \n",
- " 1276 | \n",
- " 1.715200 | \n",
- " \n",
- " \n",
- " 1277 | \n",
- " 1.483700 | \n",
- " \n",
- " \n",
- " 1278 | \n",
- " 1.669100 | \n",
- " \n",
- " \n",
- " 1279 | \n",
- " 1.831100 | \n",
- " \n",
- " \n",
- " 1280 | \n",
- " 1.341500 | \n",
- " \n",
- " \n",
- " 1281 | \n",
- " 1.286600 | \n",
- " \n",
- " \n",
- " 1282 | \n",
- " 2.172900 | \n",
- " \n",
- " \n",
- " 1283 | \n",
- " 1.279800 | \n",
- " \n",
- " \n",
- " 1284 | \n",
- " 1.541100 | \n",
- " \n",
- " \n",
- " 1285 | \n",
- " 1.510900 | \n",
- " \n",
- " \n",
- " 1286 | \n",
- " 1.738900 | \n",
- " \n",
- " \n",
- " 1287 | \n",
- " 2.022900 | \n",
- " \n",
- " \n",
- " 1288 | \n",
- " 1.392300 | \n",
- " \n",
- " \n",
- " 1289 | \n",
- " 1.726400 | \n",
- " \n",
- " \n",
- " 1290 | \n",
- " 1.726200 | \n",
- " \n",
- " \n",
- " 1291 | \n",
- " 1.194800 | \n",
- " \n",
- " \n",
- " 1292 | \n",
- " 1.868600 | \n",
- " \n",
- " \n",
- " 1293 | \n",
- " 1.385900 | \n",
- " \n",
- " \n",
- " 1294 | \n",
- " 1.286000 | \n",
- " \n",
- " \n",
- " 1295 | \n",
- " 1.194300 | \n",
- " \n",
- " \n",
- " 1296 | \n",
- " 1.382000 | \n",
- " \n",
- " \n",
- " 1297 | \n",
- " 1.404000 | \n",
- " \n",
- " \n",
- " 1298 | \n",
- " 1.408100 | \n",
- " \n",
- " \n",
- " 1299 | \n",
- " 1.501500 | \n",
- " \n",
- " \n",
- " 1300 | \n",
- " 1.490700 | \n",
- " \n",
- " \n",
- " 1301 | \n",
- " 1.724600 | \n",
- " \n",
- " \n",
- " 1302 | \n",
- " 1.490200 | \n",
- " \n",
- " \n",
- " 1303 | \n",
- " 1.325500 | \n",
- " \n",
- " \n",
- " 1304 | \n",
- " 1.328100 | \n",
- " \n",
- " \n",
- " 1305 | \n",
- " 1.446800 | \n",
- " \n",
- " \n",
- " 1306 | \n",
- " 1.585600 | \n",
- " \n",
- " \n",
- " 1307 | \n",
- " 1.568600 | \n",
- " \n",
- " \n",
- " 1308 | \n",
- " 1.239700 | \n",
- " \n",
- " \n",
- " 1309 | \n",
- " 1.486200 | \n",
- " \n",
- " \n",
- " 1310 | \n",
- " 1.259000 | \n",
- " \n",
- " \n",
- " 1311 | \n",
- " 1.582600 | \n",
- " \n",
- " \n",
- " 1312 | \n",
- " 1.492900 | \n",
- " \n",
- " \n",
- " 1313 | \n",
- " 1.945200 | \n",
- " \n",
- " \n",
- " 1314 | \n",
- " 1.244300 | \n",
- " \n",
- " \n",
- " 1315 | \n",
- " 1.230100 | \n",
- " \n",
- " \n",
- " 1316 | \n",
- " 1.198100 | \n",
- " \n",
- " \n",
- " 1317 | \n",
- " 1.960200 | \n",
- " \n",
- " \n",
- " 1318 | \n",
- " 1.218300 | \n",
- " \n",
- " \n",
- " 1319 | \n",
- " 1.480200 | \n",
- " \n",
- " \n",
- " 1320 | \n",
- " 2.038200 | \n",
- " \n",
- " \n",
- " 1321 | \n",
- " 1.254900 | \n",
- " \n",
- " \n",
- " 1322 | \n",
- " 1.398200 | \n",
- " \n",
- " \n",
- " 1323 | \n",
- " 2.160600 | \n",
- " \n",
- " \n",
- " 1324 | \n",
- " 1.808800 | \n",
- " \n",
- " \n",
- " 1325 | \n",
- " 1.161100 | \n",
- " \n",
- " \n",
- " 1326 | \n",
- " 1.524300 | \n",
- " \n",
- " \n",
- " 1327 | \n",
- " 1.753600 | \n",
- " \n",
- " \n",
- " 1328 | \n",
- " 1.516600 | \n",
- " \n",
- " \n",
- " 1329 | \n",
- " 1.550100 | \n",
- " \n",
- " \n",
- " 1330 | \n",
- " 1.396700 | \n",
- " \n",
- " \n",
- " 1331 | \n",
- " 1.267800 | \n",
- " \n",
- " \n",
- " 1332 | \n",
- " 1.887800 | \n",
- " \n",
- " \n",
- " 1333 | \n",
- " 1.668900 | \n",
- " \n",
- " \n",
- " 1334 | \n",
- " 1.200200 | \n",
- " \n",
- " \n",
- " 1335 | \n",
- " 1.406400 | \n",
- " \n",
- " \n",
- " 1336 | \n",
- " 1.766200 | \n",
- " \n",
- " \n",
- " 1337 | \n",
- " 1.383500 | \n",
- " \n",
- " \n",
- " 1338 | \n",
- " 1.061600 | \n",
- " \n",
- " \n",
- " 1339 | \n",
- " 1.454800 | \n",
- " \n",
- " \n",
- " 1340 | \n",
- " 1.675400 | \n",
- " \n",
- " \n",
- " 1341 | \n",
- " 1.154200 | \n",
- " \n",
- " \n",
- " 1342 | \n",
- " 1.308500 | \n",
- " \n",
- " \n",
- " 1343 | \n",
- " 1.265900 | \n",
- " \n",
- " \n",
- " 1344 | \n",
- " 1.240400 | \n",
- " \n",
- " \n",
- " 1345 | \n",
- " 1.778700 | \n",
- " \n",
- " \n",
- " 1346 | \n",
- " 1.686400 | \n",
- " \n",
- " \n",
- " 1347 | \n",
- " 1.446200 | \n",
- " \n",
- " \n",
- " 1348 | \n",
- " 1.640200 | \n",
- " \n",
- " \n",
- " 1349 | \n",
- " 1.769500 | \n",
- " \n",
- " \n",
- " 1350 | \n",
- " 1.058200 | \n",
- " \n",
- " \n",
- " 1351 | \n",
- " 1.490600 | \n",
- " \n",
- " \n",
- " 1352 | \n",
- " 1.314700 | \n",
- " \n",
- " \n",
- " 1353 | \n",
- " 1.228400 | \n",
- " \n",
- " \n",
- " 1354 | \n",
- " 2.681100 | \n",
- " \n",
- " \n",
- " 1355 | \n",
- " 1.487300 | \n",
- " \n",
- " \n",
- " 1356 | \n",
- " 1.359300 | \n",
- " \n",
- " \n",
- " 1357 | \n",
- " 1.479600 | \n",
- " \n",
- " \n",
- " 1358 | \n",
- " 1.591000 | \n",
- " \n",
- " \n",
- " 1359 | \n",
- " 1.147800 | \n",
- " \n",
- " \n",
- " 1360 | \n",
- " 1.390600 | \n",
- " \n",
- " \n",
- " 1361 | \n",
- " 1.457000 | \n",
- " \n",
- " \n",
- " 1362 | \n",
- " 1.591500 | \n",
- " \n",
- " \n",
- " 1363 | \n",
- " 1.562300 | \n",
- " \n",
- " \n",
- " 1364 | \n",
- " 1.697800 | \n",
- " \n",
- " \n",
- " 1365 | \n",
- " 1.536500 | \n",
- " \n",
- " \n",
- " 1366 | \n",
- " 1.566500 | \n",
- " \n",
- " \n",
- " 1367 | \n",
- " 2.623000 | \n",
- " \n",
- " \n",
- " 1368 | \n",
- " 1.648400 | \n",
- " \n",
- " \n",
- " 1369 | \n",
- " 1.464800 | \n",
- " \n",
- " \n",
- " 1370 | \n",
- " 1.142600 | \n",
- " \n",
- " \n",
- " 1371 | \n",
- " 2.087000 | \n",
- " \n",
- " \n",
- " 1372 | \n",
- " 1.228200 | \n",
- " \n",
- " \n",
- " 1373 | \n",
- " 1.964000 | \n",
- " \n",
- " \n",
- " 1374 | \n",
- " 1.372000 | \n",
- " \n",
- " \n",
- " 1375 | \n",
- " 1.094300 | \n",
- " \n",
- " \n",
- " 1376 | \n",
- " 1.238100 | \n",
- " \n",
- " \n",
- " 1377 | \n",
- " 1.355000 | \n",
- " \n",
- " \n",
- " 1378 | \n",
- " 1.280700 | \n",
- " \n",
- " \n",
- " 1379 | \n",
- " 1.578500 | \n",
- " \n",
- " \n",
- " 1380 | \n",
- " 1.246600 | \n",
- " \n",
- " \n",
- " 1381 | \n",
- " 1.291800 | \n",
- " \n",
- " \n",
- " 1382 | \n",
- " 1.567100 | \n",
- " \n",
- " \n",
- " 1383 | \n",
- " 1.458800 | \n",
- " \n",
- " \n",
- " 1384 | \n",
- " 1.404600 | \n",
- " \n",
- " \n",
- " 1385 | \n",
- " 1.314400 | \n",
- " \n",
- " \n",
- " 1386 | \n",
- " 1.485200 | \n",
- " \n",
- " \n",
- " 1387 | \n",
- " 1.367100 | \n",
- " \n",
- " \n",
- " 1388 | \n",
- " 1.231800 | \n",
- " \n",
- " \n",
- " 1389 | \n",
- " 1.532800 | \n",
- " \n",
- " \n",
- " 1390 | \n",
- " 1.629000 | \n",
- " \n",
- " \n",
- " 1391 | \n",
- " 1.505700 | \n",
- " \n",
- " \n",
- " 1392 | \n",
- " 1.467900 | \n",
- " \n",
- " \n",
- " 1393 | \n",
- " 1.284300 | \n",
- " \n",
- " \n",
- " 1394 | \n",
- " 1.297300 | \n",
- " \n",
- " \n",
- " 1395 | \n",
- " 1.279500 | \n",
- " \n",
- " \n",
- " 1396 | \n",
- " 1.329700 | \n",
- " \n",
- " \n",
- " 1397 | \n",
- " 1.841900 | \n",
- " \n",
- " \n",
- " 1398 | \n",
- " 1.885200 | \n",
- " \n",
- " \n",
- " 1399 | \n",
- " 1.766500 | \n",
- " \n",
- " \n",
- " 1400 | \n",
- " 1.658700 | \n",
- " \n",
- " \n",
- " 1401 | \n",
- " 1.696900 | \n",
- " \n",
- " \n",
- " 1402 | \n",
- " 1.440200 | \n",
- " \n",
- " \n",
- " 1403 | \n",
- " 1.331800 | \n",
- " \n",
- " \n",
- " 1404 | \n",
- " 1.311300 | \n",
- " \n",
- " \n",
- " 1405 | \n",
- " 1.169700 | \n",
- " \n",
- " \n",
- " 1406 | \n",
- " 1.191900 | \n",
- " \n",
- " \n",
- " 1407 | \n",
- " 1.683000 | \n",
- " \n",
- " \n",
- " 1408 | \n",
- " 1.387800 | \n",
- " \n",
- " \n",
- " 1409 | \n",
- " 1.485200 | \n",
- " \n",
- " \n",
- " 1410 | \n",
- " 1.584100 | \n",
- " \n",
- " \n",
- " 1411 | \n",
- " 1.308300 | \n",
- " \n",
- " \n",
- " 1412 | \n",
- " 1.844900 | \n",
- " \n",
- " \n",
- " 1413 | \n",
- " 1.937500 | \n",
- " \n",
- " \n",
- " 1414 | \n",
- " 1.423400 | \n",
- " \n",
- " \n",
- " 1415 | \n",
- " 1.248800 | \n",
- " \n",
- " \n",
- " 1416 | \n",
- " 1.455400 | \n",
- " \n",
- " \n",
- " 1417 | \n",
- " 1.848600 | \n",
- " \n",
- " \n",
- " 1418 | \n",
- " 1.498000 | \n",
- " \n",
- " \n",
- " 1419 | \n",
- " 1.732700 | \n",
- " \n",
- " \n",
- " 1420 | \n",
- " 1.614900 | \n",
- " \n",
- " \n",
- " 1421 | \n",
- " 1.280700 | \n",
- " \n",
- " \n",
- " 1422 | \n",
- " 1.175900 | \n",
- " \n",
- " \n",
- " 1423 | \n",
- " 1.487100 | \n",
- " \n",
- " \n",
- " 1424 | \n",
- " 1.210500 | \n",
- " \n",
- " \n",
- " 1425 | \n",
- " 1.976600 | \n",
- " \n",
- " \n",
- " 1426 | \n",
- " 1.080200 | \n",
- " \n",
- " \n",
- " 1427 | \n",
- " 1.539300 | \n",
- " \n",
- " \n",
- " 1428 | \n",
- " 1.173200 | \n",
- " \n",
- " \n",
- " 1429 | \n",
- " 1.548800 | \n",
- " \n",
- " \n",
- " 1430 | \n",
- " 1.209700 | \n",
- " \n",
- " \n",
- " 1431 | \n",
- " 1.931000 | \n",
- " \n",
- " \n",
- " 1432 | \n",
- " 1.474700 | \n",
- " \n",
- " \n",
- " 1433 | \n",
- " 1.220800 | \n",
- " \n",
- " \n",
- " 1434 | \n",
- " 1.301300 | \n",
- " \n",
- " \n",
- " 1435 | \n",
- " 1.387300 | \n",
- " \n",
- " \n",
- " 1436 | \n",
- " 1.237200 | \n",
- " \n",
- " \n",
- " 1437 | \n",
- " 1.428600 | \n",
- " \n",
- " \n",
- " 1438 | \n",
- " 1.408800 | \n",
- " \n",
- " \n",
- " 1439 | \n",
- " 2.004600 | \n",
- " \n",
- " \n",
- " 1440 | \n",
- " 1.161100 | \n",
- " \n",
- " \n",
- " 1441 | \n",
- " 1.000800 | \n",
- " \n",
- " \n",
- " 1442 | \n",
- " 2.192800 | \n",
- " \n",
- " \n",
- " 1443 | \n",
- " 1.224800 | \n",
- " \n",
- " \n",
- " 1444 | \n",
- " 1.447600 | \n",
- " \n",
- " \n",
- " 1445 | \n",
- " 1.323800 | \n",
- " \n",
- " \n",
- " 1446 | \n",
- " 1.293800 | \n",
- " \n",
- " \n",
- " 1447 | \n",
- " 1.486600 | \n",
- " \n",
- " \n",
- " 1448 | \n",
- " 1.599800 | \n",
- " \n",
- " \n",
- " 1449 | \n",
- " 1.612000 | \n",
- " \n",
- " \n",
- " 1450 | \n",
- " 1.127600 | \n",
- " \n",
- " \n",
- " 1451 | \n",
- " 1.466000 | \n",
- " \n",
- " \n",
- " 1452 | \n",
- " 1.097500 | \n",
- " \n",
- " \n",
- " 1453 | \n",
- " 1.224200 | \n",
- " \n",
- " \n",
- " 1454 | \n",
- " 1.343300 | \n",
- " \n",
- " \n",
- " 1455 | \n",
- " 1.112000 | \n",
- " \n",
- " \n",
- " 1456 | \n",
- " 1.416500 | \n",
- " \n",
- " \n",
- " 1457 | \n",
- " 1.659900 | \n",
- " \n",
- " \n",
- " 1458 | \n",
- " 1.646200 | \n",
- " \n",
- " \n",
- " 1459 | \n",
- " 1.207200 | \n",
- " \n",
- " \n",
- " 1460 | \n",
- " 1.412400 | \n",
- " \n",
- " \n",
- " 1461 | \n",
- " 1.771300 | \n",
- " \n",
- " \n",
- " 1462 | \n",
- " 1.281900 | \n",
- " \n",
- " \n",
- " 1463 | \n",
- " 1.614400 | \n",
- " \n",
- " \n",
- " 1464 | \n",
- " 1.293200 | \n",
- " \n",
- " \n",
- " 1465 | \n",
- " 1.331500 | \n",
- " \n",
- " \n",
- " 1466 | \n",
- " 1.752700 | \n",
- " \n",
- " \n",
- " 1467 | \n",
- " 1.356000 | \n",
- " \n",
- " \n",
- " 1468 | \n",
- " 1.526300 | \n",
- " \n",
- " \n",
- " 1469 | \n",
- " 2.003600 | \n",
- " \n",
- " \n",
- " 1470 | \n",
- " 1.281600 | \n",
- " \n",
- " \n",
- " 1471 | \n",
- " 1.410900 | \n",
- " \n",
- " \n",
- " 1472 | \n",
- " 1.276200 | \n",
- " \n",
- " \n",
- " 1473 | \n",
- " 1.268100 | \n",
- " \n",
- " \n",
- " 1474 | \n",
- " 1.431900 | \n",
- " \n",
- " \n",
- " 1475 | \n",
- " 1.241500 | \n",
- " \n",
- " \n",
- " 1476 | \n",
- " 1.260600 | \n",
- " \n",
- " \n",
- " 1477 | \n",
- " 1.129800 | \n",
- " \n",
- " \n",
- " 1478 | \n",
- " 1.080700 | \n",
- " \n",
- " \n",
- " 1479 | \n",
- " 1.496200 | \n",
- " \n",
- " \n",
- " 1480 | \n",
- " 1.541800 | \n",
- " \n",
- " \n",
- " 1481 | \n",
- " 1.462100 | \n",
- " \n",
- " \n",
- " 1482 | \n",
- " 1.237400 | \n",
- " \n",
- " \n",
- " 1483 | \n",
- " 1.323200 | \n",
- " \n",
- " \n",
- " 1484 | \n",
- " 1.332900 | \n",
- " \n",
- " \n",
- " 1485 | \n",
- " 1.342000 | \n",
- " \n",
- " \n",
- " 1486 | \n",
- " 1.252700 | \n",
- " \n",
- " \n",
- " 1487 | \n",
- " 1.497700 | \n",
- " \n",
- " \n",
- " 1488 | \n",
- " 1.855800 | \n",
- " \n",
- " \n",
- " 1489 | \n",
- " 1.537900 | \n",
- " \n",
- " \n",
- " 1490 | \n",
- " 1.347500 | \n",
- " \n",
- " \n",
- " 1491 | \n",
- " 1.382100 | \n",
- " \n",
- " \n",
- " 1492 | \n",
- " 1.553000 | \n",
- " \n",
- " \n",
- " 1493 | \n",
- " 2.608600 | \n",
- " \n",
- " \n",
- " 1494 | \n",
- " 2.119100 | \n",
- " \n",
- " \n",
- " 1495 | \n",
- " 1.491000 | \n",
- " \n",
- " \n",
- " 1496 | \n",
- " 1.352300 | \n",
- " \n",
- " \n",
- " 1497 | \n",
- " 1.630800 | \n",
- " \n",
- " \n",
- " 1498 | \n",
- " 1.560000 | \n",
- " \n",
- " \n",
- " 1499 | \n",
- " 1.456100 | \n",
- " \n",
- " \n",
- " 1500 | \n",
- " 1.157400 | \n",
- " \n",
- " \n",
- " 1501 | \n",
- " 1.693000 | \n",
- " \n",
- " \n",
- " 1502 | \n",
- " 1.260400 | \n",
- " \n",
- " \n",
- " 1503 | \n",
- " 1.274100 | \n",
- " \n",
- " \n",
- " 1504 | \n",
- " 1.389800 | \n",
- " \n",
- " \n",
- " 1505 | \n",
- " 1.730500 | \n",
- " \n",
- " \n",
- " 1506 | \n",
- " 1.047200 | \n",
- " \n",
- " \n",
- " 1507 | \n",
- " 1.146200 | \n",
- " \n",
- " \n",
- " 1508 | \n",
- " 1.249000 | \n",
- " \n",
- " \n",
- " 1509 | \n",
- " 1.045600 | \n",
- " \n",
- " \n",
- " 1510 | \n",
- " 1.205500 | \n",
- " \n",
- " \n",
- " 1511 | \n",
- " 1.487500 | \n",
- " \n",
- " \n",
- " 1512 | \n",
- " 1.188200 | \n",
- " \n",
- " \n",
- " 1513 | \n",
- " 1.481400 | \n",
- " \n",
- " \n",
- " 1514 | \n",
- " 1.218600 | \n",
- " \n",
- " \n",
- " 1515 | \n",
- " 1.323700 | \n",
- " \n",
- " \n",
- " 1516 | \n",
- " 2.026800 | \n",
- " \n",
- " \n",
- " 1517 | \n",
- " 1.314900 | \n",
- " \n",
- " \n",
- " 1518 | \n",
- " 1.493400 | \n",
- " \n",
- " \n",
- " 1519 | \n",
- " 1.359100 | \n",
- " \n",
- " \n",
- " 1520 | \n",
- " 1.337100 | \n",
- " \n",
- " \n",
- " 1521 | \n",
- " 1.477900 | \n",
- " \n",
- " \n",
- " 1522 | \n",
- " 1.739700 | \n",
- " \n",
- " \n",
- " 1523 | \n",
- " 1.452900 | \n",
- " \n",
- " \n",
- " 1524 | \n",
- " 1.505000 | \n",
- " \n",
- " \n",
- " 1525 | \n",
- " 1.768000 | \n",
- " \n",
- " \n",
- " 1526 | \n",
- " 1.347100 | \n",
- " \n",
- " \n",
- " 1527 | \n",
- " 1.325500 | \n",
- " \n",
- " \n",
- " 1528 | \n",
- " 1.483200 | \n",
- " \n",
- " \n",
- " 1529 | \n",
- " 1.399800 | \n",
- " \n",
- " \n",
- " 1530 | \n",
- " 1.430400 | \n",
- " \n",
- " \n",
- " 1531 | \n",
- " 1.611100 | \n",
- " \n",
- " \n",
- " 1532 | \n",
- " 1.109700 | \n",
- " \n",
- " \n",
- " 1533 | \n",
- " 1.618700 | \n",
- " \n",
- " \n",
- " 1534 | \n",
- " 1.765500 | \n",
- " \n",
- " \n",
- " 1535 | \n",
- " 1.579700 | \n",
- " \n",
- " \n",
- " 1536 | \n",
- " 1.667300 | \n",
- " \n",
- " \n",
- " 1537 | \n",
- " 1.191600 | \n",
- " \n",
- " \n",
- " 1538 | \n",
- " 1.372400 | \n",
- " \n",
- " \n",
- " 1539 | \n",
- " 1.266700 | \n",
- " \n",
- " \n",
- " 1540 | \n",
- " 1.937600 | \n",
- " \n",
- " \n",
- " 1541 | \n",
- " 1.326100 | \n",
- " \n",
- " \n",
- " 1542 | \n",
- " 1.659100 | \n",
- " \n",
- " \n",
- " 1543 | \n",
- " 1.468500 | \n",
- " \n",
- " \n",
- " 1544 | \n",
- " 2.073200 | \n",
- " \n",
- " \n",
- " 1545 | \n",
- " 1.997600 | \n",
- " \n",
- " \n",
- " 1546 | \n",
- " 1.534800 | \n",
- " \n",
- " \n",
- " 1547 | \n",
- " 1.339500 | \n",
- " \n",
- " \n",
- " 1548 | \n",
- " 1.869700 | \n",
- " \n",
- " \n",
- " 1549 | \n",
- " 1.356400 | \n",
- " \n",
- " \n",
- " 1550 | \n",
- " 1.344300 | \n",
- " \n",
- " \n",
- " 1551 | \n",
- " 1.465400 | \n",
- " \n",
- " \n",
- " 1552 | \n",
- " 1.675600 | \n",
- " \n",
- " \n",
- " 1553 | \n",
- " 2.032900 | \n",
- " \n",
- " \n",
- " 1554 | \n",
- " 1.158700 | \n",
- " \n",
- " \n",
- " 1555 | \n",
- " 1.408200 | \n",
- " \n",
- " \n",
- " 1556 | \n",
- " 1.188300 | \n",
- " \n",
- " \n",
- " 1557 | \n",
- " 1.628000 | \n",
- " \n",
- " \n",
- " 1558 | \n",
- " 1.787000 | \n",
- " \n",
- " \n",
- " 1559 | \n",
- " 1.257100 | \n",
- " \n",
- " \n",
- " 1560 | \n",
- " 1.495700 | \n",
- " \n",
- " \n",
- " 1561 | \n",
- " 1.378000 | \n",
- " \n",
- " \n",
- " 1562 | \n",
- " 1.278900 | \n",
- " \n",
- " \n",
- " 1563 | \n",
- " 1.384600 | \n",
- " \n",
- " \n",
- " 1564 | \n",
- " 1.221200 | \n",
- " \n",
- " \n",
- " 1565 | \n",
- " 1.072200 | \n",
- " \n",
- " \n",
- " 1566 | \n",
- " 1.319900 | \n",
- " \n",
- " \n",
- " 1567 | \n",
- " 1.257300 | \n",
- " \n",
- " \n",
- " 1568 | \n",
- " 1.475100 | \n",
- " \n",
- " \n",
- " 1569 | \n",
- " 1.778200 | \n",
- " \n",
- " \n",
- " 1570 | \n",
- " 1.154000 | \n",
- " \n",
- " \n",
- " 1571 | \n",
- " 1.781600 | \n",
- " \n",
- " \n",
- " 1572 | \n",
- " 1.409800 | \n",
- " \n",
- " \n",
- " 1573 | \n",
- " 1.491800 | \n",
- " \n",
- " \n",
- " 1574 | \n",
- " 1.261600 | \n",
- " \n",
- " \n",
- " 1575 | \n",
- " 1.139500 | \n",
- " \n",
- " \n",
- " 1576 | \n",
- " 1.614000 | \n",
- " \n",
- " \n",
- " 1577 | \n",
- " 1.224200 | \n",
- " \n",
- " \n",
- " 1578 | \n",
- " 1.096800 | \n",
- " \n",
- " \n",
- " 1579 | \n",
- " 1.484000 | \n",
- " \n",
- " \n",
- " 1580 | \n",
- " 1.140000 | \n",
- " \n",
- " \n",
- " 1581 | \n",
- " 1.441500 | \n",
- " \n",
- " \n",
- " 1582 | \n",
- " 1.300100 | \n",
- " \n",
- " \n",
- " 1583 | \n",
- " 1.394300 | \n",
- " \n",
- " \n",
- " 1584 | \n",
- " 1.371300 | \n",
- " \n",
- " \n",
- " 1585 | \n",
- " 1.244600 | \n",
- " \n",
- " \n",
- " 1586 | \n",
- " 1.527500 | \n",
- " \n",
- " \n",
- " 1587 | \n",
- " 2.437100 | \n",
- " \n",
- " \n",
- " 1588 | \n",
- " 1.579000 | \n",
- " \n",
- " \n",
- " 1589 | \n",
- " 1.894700 | \n",
- " \n",
- " \n",
- " 1590 | \n",
- " 1.187700 | \n",
- " \n",
- " \n",
- " 1591 | \n",
- " 1.296600 | \n",
- " \n",
- " \n",
- " 1592 | \n",
- " 2.054600 | \n",
- " \n",
- " \n",
- " 1593 | \n",
- " 1.280000 | \n",
- " \n",
- " \n",
- " 1594 | \n",
- " 1.070100 | \n",
- " \n",
- " \n",
- " 1595 | \n",
- " 1.627400 | \n",
- " \n",
- " \n",
- " 1596 | \n",
- " 1.642800 | \n",
- " \n",
- " \n",
- " 1597 | \n",
- " 1.528000 | \n",
- " \n",
- " \n",
- " 1598 | \n",
- " 1.416800 | \n",
- " \n",
- " \n",
- " 1599 | \n",
- " 1.370400 | \n",
- " \n",
- " \n",
- " 1600 | \n",
- " 1.583100 | \n",
- " \n",
- " \n",
- " 1601 | \n",
- " 1.469200 | \n",
- " \n",
- " \n",
- " 1602 | \n",
- " 1.558900 | \n",
- " \n",
- " \n",
- " 1603 | \n",
- " 1.554000 | \n",
- " \n",
- " \n",
- " 1604 | \n",
- " 1.136600 | \n",
- " \n",
- " \n",
- " 1605 | \n",
- " 1.786800 | \n",
- " \n",
- " \n",
- " 1606 | \n",
- " 1.758200 | \n",
- " \n",
- " \n",
- " 1607 | \n",
- " 0.953700 | \n",
- " \n",
- " \n",
- " 1608 | \n",
- " 1.620400 | \n",
- " \n",
- " \n",
- " 1609 | \n",
- " 1.345700 | \n",
- " \n",
- " \n",
- " 1610 | \n",
- " 1.281400 | \n",
- " \n",
- " \n",
- " 1611 | \n",
- " 1.447800 | \n",
- " \n",
- " \n",
- " 1612 | \n",
- " 2.103000 | \n",
- " \n",
- " \n",
- " 1613 | \n",
- " 1.548000 | \n",
- " \n",
- " \n",
- " 1614 | \n",
- " 1.446800 | \n",
- " \n",
- " \n",
- " 1615 | \n",
- " 1.200200 | \n",
- " \n",
- " \n",
- " 1616 | \n",
- " 2.596100 | \n",
- " \n",
- " \n",
- " 1617 | \n",
- " 1.905400 | \n",
- " \n",
- " \n",
- " 1618 | \n",
- " 1.535200 | \n",
- " \n",
- " \n",
- " 1619 | \n",
- " 1.465600 | \n",
- " \n",
- " \n",
- " 1620 | \n",
- " 1.019500 | \n",
- " \n",
- " \n",
- " 1621 | \n",
- " 1.119800 | \n",
- " \n",
- " \n",
- " 1622 | \n",
- " 1.291300 | \n",
- " \n",
- " \n",
- " 1623 | \n",
- " 1.706000 | \n",
- " \n",
- " \n",
- " 1624 | \n",
- " 1.296200 | \n",
- " \n",
- " \n",
- " 1625 | \n",
- " 1.559600 | \n",
- " \n",
- " \n",
- " 1626 | \n",
- " 1.714100 | \n",
- " \n",
- " \n",
- " 1627 | \n",
- " 1.329800 | \n",
- " \n",
- " \n",
- " 1628 | \n",
- " 1.166700 | \n",
- " \n",
- " \n",
- " 1629 | \n",
- " 1.662600 | \n",
- " \n",
- " \n",
- " 1630 | \n",
- " 1.293900 | \n",
- " \n",
- " \n",
- " 1631 | \n",
- " 1.357800 | \n",
- " \n",
- " \n",
- " 1632 | \n",
- " 1.420500 | \n",
- " \n",
- " \n",
- " 1633 | \n",
- " 1.679700 | \n",
- " \n",
- " \n",
- " 1634 | \n",
- " 1.514300 | \n",
- " \n",
- " \n",
- " 1635 | \n",
- " 1.709600 | \n",
- " \n",
- " \n",
- " 1636 | \n",
- " 1.140300 | \n",
- " \n",
- " \n",
- " 1637 | \n",
- " 1.351100 | \n",
- " \n",
- " \n",
- " 1638 | \n",
- " 1.620900 | \n",
- " \n",
- " \n",
- " 1639 | \n",
- " 1.325700 | \n",
- " \n",
- " \n",
- " 1640 | \n",
- " 1.669100 | \n",
- " \n",
- " \n",
- " 1641 | \n",
- " 1.196700 | \n",
- " \n",
- " \n",
- " 1642 | \n",
- " 1.799600 | \n",
- " \n",
- " \n",
- " 1643 | \n",
- " 2.356400 | \n",
- " \n",
- " \n",
- " 1644 | \n",
- " 1.440900 | \n",
- " \n",
- " \n",
- " 1645 | \n",
- " 1.170000 | \n",
- " \n",
- " \n",
- " 1646 | \n",
- " 1.751900 | \n",
- " \n",
- " \n",
- " 1647 | \n",
- " 1.661000 | \n",
- " \n",
- " \n",
- " 1648 | \n",
- " 1.412100 | \n",
- " \n",
- " \n",
- " 1649 | \n",
- " 1.389200 | \n",
- " \n",
- " \n",
- " 1650 | \n",
- " 1.585800 | \n",
- " \n",
- " \n",
- " 1651 | \n",
- " 1.676900 | \n",
- " \n",
- " \n",
- " 1652 | \n",
- " 1.647500 | \n",
- " \n",
- " \n",
- " 1653 | \n",
- " 1.095800 | \n",
- " \n",
- " \n",
- " 1654 | \n",
- " 1.028700 | \n",
- " \n",
- " \n",
- " 1655 | \n",
- " 1.265500 | \n",
- " \n",
- " \n",
- " 1656 | \n",
- " 1.192700 | \n",
- " \n",
- " \n",
- " 1657 | \n",
- " 1.682300 | \n",
- " \n",
- " \n",
- " 1658 | \n",
- " 1.137500 | \n",
- " \n",
- " \n",
- " 1659 | \n",
- " 1.226300 | \n",
- " \n",
- " \n",
- " 1660 | \n",
- " 1.419300 | \n",
- " \n",
- " \n",
- " 1661 | \n",
- " 1.490500 | \n",
- " \n",
- " \n",
- " 1662 | \n",
- " 1.404000 | \n",
- " \n",
- " \n",
- " 1663 | \n",
- " 1.138800 | \n",
- " \n",
- " \n",
- " 1664 | \n",
- " 1.637600 | \n",
- " \n",
- " \n",
- " 1665 | \n",
- " 1.024700 | \n",
- " \n",
- " \n",
- " 1666 | \n",
- " 1.229500 | \n",
- " \n",
- " \n",
- " 1667 | \n",
- " 1.366200 | \n",
- " \n",
- " \n",
- " 1668 | \n",
- " 1.519400 | \n",
- " \n",
- " \n",
- " 1669 | \n",
- " 1.155800 | \n",
- " \n",
- " \n",
- " 1670 | \n",
- " 1.503000 | \n",
- " \n",
- " \n",
- " 1671 | \n",
- " 1.375900 | \n",
- " \n",
- " \n",
- " 1672 | \n",
- " 1.220400 | \n",
- " \n",
- " \n",
- " 1673 | \n",
- " 2.008600 | \n",
- " \n",
- " \n",
- " 1674 | \n",
- " 1.705800 | \n",
- " \n",
- " \n",
- " 1675 | \n",
- " 1.622200 | \n",
- " \n",
- " \n",
- " 1676 | \n",
- " 1.551000 | \n",
- " \n",
- " \n",
- " 1677 | \n",
- " 1.181000 | \n",
- " \n",
- " \n",
- " 1678 | \n",
- " 2.058300 | \n",
- " \n",
- " \n",
- " 1679 | \n",
- " 1.616300 | \n",
- " \n",
- " \n",
- " 1680 | \n",
- " 1.422900 | \n",
- " \n",
- " \n",
- " 1681 | \n",
- " 0.961000 | \n",
- " \n",
- " \n",
- " 1682 | \n",
- " 1.238500 | \n",
- " \n",
- " \n",
- " 1683 | \n",
- " 1.534600 | \n",
- " \n",
- " \n",
- " 1684 | \n",
- " 1.718300 | \n",
- " \n",
- " \n",
- " 1685 | \n",
- " 1.256400 | \n",
- " \n",
- " \n",
- " 1686 | \n",
- " 1.467500 | \n",
- " \n",
- " \n",
- " 1687 | \n",
- " 1.802200 | \n",
- " \n",
- " \n",
- " 1688 | \n",
- " 1.959200 | \n",
- " \n",
- " \n",
- " 1689 | \n",
- " 1.751000 | \n",
- " \n",
- " \n",
- " 1690 | \n",
- " 1.609300 | \n",
- " \n",
- " \n",
- " 1691 | \n",
- " 1.105800 | \n",
- " \n",
- " \n",
- " 1692 | \n",
- " 1.000300 | \n",
- " \n",
- " \n",
- " 1693 | \n",
- " 2.068200 | \n",
- " \n",
- " \n",
- " 1694 | \n",
- " 1.725000 | \n",
- " \n",
- " \n",
- " 1695 | \n",
- " 1.488500 | \n",
- " \n",
- " \n",
- " 1696 | \n",
- " 1.433400 | \n",
- " \n",
- " \n",
- " 1697 | \n",
- " 1.736800 | \n",
- " \n",
- " \n",
- " 1698 | \n",
- " 1.422700 | \n",
- " \n",
- " \n",
- " 1699 | \n",
- " 1.147900 | \n",
- " \n",
- " \n",
- " 1700 | \n",
- " 1.804000 | \n",
- " \n",
- " \n",
- " 1701 | \n",
- " 2.336700 | \n",
- " \n",
- " \n",
- " 1702 | \n",
- " 1.770800 | \n",
- " \n",
- " \n",
- " 1703 | \n",
- " 1.413700 | \n",
- " \n",
- " \n",
- " 1704 | \n",
- " 1.201600 | \n",
- " \n",
- " \n",
- " 1705 | \n",
- " 1.279500 | \n",
- " \n",
- " \n",
- " 1706 | \n",
- " 1.805600 | \n",
- " \n",
- " \n",
- " 1707 | \n",
- " 1.776300 | \n",
- " \n",
- " \n",
- " 1708 | \n",
- " 1.390500 | \n",
- " \n",
- " \n",
- " 1709 | \n",
- " 1.560100 | \n",
- " \n",
- " \n",
- " 1710 | \n",
- " 1.389400 | \n",
- " \n",
- " \n",
- " 1711 | \n",
- " 1.311000 | \n",
- " \n",
- " \n",
- " 1712 | \n",
- " 1.451800 | \n",
- " \n",
- " \n",
- " 1713 | \n",
- " 1.491600 | \n",
- " \n",
- " \n",
- " 1714 | \n",
- " 1.891500 | \n",
- " \n",
- " \n",
- " 1715 | \n",
- " 1.476800 | \n",
- " \n",
- " \n",
- " 1716 | \n",
- " 1.431300 | \n",
- " \n",
- " \n",
- " 1717 | \n",
- " 1.287700 | \n",
- " \n",
- " \n",
- " 1718 | \n",
- " 1.384600 | \n",
- " \n",
- " \n",
- " 1719 | \n",
- " 1.401400 | \n",
- " \n",
- " \n",
- " 1720 | \n",
- " 1.637300 | \n",
- " \n",
- " \n",
- " 1721 | \n",
- " 1.033600 | \n",
- " \n",
- " \n",
- " 1722 | \n",
- " 1.715000 | \n",
- " \n",
- " \n",
- " 1723 | \n",
- " 1.154200 | \n",
- " \n",
- " \n",
- " 1724 | \n",
- " 1.557200 | \n",
- " \n",
- " \n",
- " 1725 | \n",
- " 1.558400 | \n",
- " \n",
- " \n",
- " 1726 | \n",
- " 1.122800 | \n",
- " \n",
- " \n",
- " 1727 | \n",
- " 1.365000 | \n",
- " \n",
- " \n",
- " 1728 | \n",
- " 1.269300 | \n",
- " \n",
- " \n",
- " 1729 | \n",
- " 1.484500 | \n",
- " \n",
- " \n",
- " 1730 | \n",
- " 1.556000 | \n",
- " \n",
- " \n",
- " 1731 | \n",
- " 1.230000 | \n",
- " \n",
- " \n",
- " 1732 | \n",
- " 1.976800 | \n",
- " \n",
- " \n",
- " 1733 | \n",
- " 1.576700 | \n",
- " \n",
- " \n",
- " 1734 | \n",
- " 1.796700 | \n",
- " \n",
- " \n",
- " 1735 | \n",
- " 1.328300 | \n",
- " \n",
- " \n",
- " 1736 | \n",
- " 1.240400 | \n",
- " \n",
- " \n",
- " 1737 | \n",
- " 1.299600 | \n",
- " \n",
- " \n",
- " 1738 | \n",
- " 1.243100 | \n",
- " \n",
- " \n",
- " 1739 | \n",
- " 1.652900 | \n",
- " \n",
- " \n",
- " 1740 | \n",
- " 1.394200 | \n",
- " \n",
- " \n",
- " 1741 | \n",
- " 2.429400 | \n",
- " \n",
- " \n",
- " 1742 | \n",
- " 1.249000 | \n",
- " \n",
- " \n",
- " 1743 | \n",
- " 1.087400 | \n",
- " \n",
- " \n",
- " 1744 | \n",
- " 1.984900 | \n",
- " \n",
- " \n",
- " 1745 | \n",
- " 1.716300 | \n",
- " \n",
- " \n",
- " 1746 | \n",
- " 1.388500 | \n",
- " \n",
- " \n",
- " 1747 | \n",
- " 1.552100 | \n",
- " \n",
- " \n",
- " 1748 | \n",
- " 1.265400 | \n",
- " \n",
- " \n",
- " 1749 | \n",
- " 1.290600 | \n",
- " \n",
- " \n",
- " 1750 | \n",
- " 1.256300 | \n",
- " \n",
- " \n",
- " 1751 | \n",
- " 1.636700 | \n",
- " \n",
- " \n",
- " 1752 | \n",
- " 1.518100 | \n",
- " \n",
- " \n",
- " 1753 | \n",
- " 1.470100 | \n",
- " \n",
- " \n",
- " 1754 | \n",
- " 1.171900 | \n",
- " \n",
- " \n",
- " 1755 | \n",
- " 1.188500 | \n",
- " \n",
- " \n",
- " 1756 | \n",
- " 1.068700 | \n",
- " \n",
- " \n",
- " 1757 | \n",
- " 1.221800 | \n",
- " \n",
- " \n",
- " 1758 | \n",
- " 1.329400 | \n",
- " \n",
- " \n",
- " 1759 | \n",
- " 1.368200 | \n",
- " \n",
- " \n",
- " 1760 | \n",
- " 1.488300 | \n",
- " \n",
- " \n",
- " 1761 | \n",
- " 1.155600 | \n",
- " \n",
- " \n",
- " 1762 | \n",
- " 1.554500 | \n",
- " \n",
- " \n",
- " 1763 | \n",
- " 1.608900 | \n",
- " \n",
- " \n",
- " 1764 | \n",
- " 1.308300 | \n",
- " \n",
- " \n",
- " 1765 | \n",
- " 1.215500 | \n",
- " \n",
- " \n",
- " 1766 | \n",
- " 1.417500 | \n",
- " \n",
- " \n",
- " 1767 | \n",
- " 1.134500 | \n",
- " \n",
- " \n",
- " 1768 | \n",
- " 1.357100 | \n",
- " \n",
- " \n",
- " 1769 | \n",
- " 1.532100 | \n",
- " \n",
- " \n",
- " 1770 | \n",
- " 1.204100 | \n",
- " \n",
- " \n",
- " 1771 | \n",
- " 1.691600 | \n",
- " \n",
- " \n",
- " 1772 | \n",
- " 1.774600 | \n",
- " \n",
- " \n",
- " 1773 | \n",
- " 0.943600 | \n",
- " \n",
- " \n",
- " 1774 | \n",
- " 1.458000 | \n",
- " \n",
- " \n",
- " 1775 | \n",
- " 1.329100 | \n",
- " \n",
- " \n",
- " 1776 | \n",
- " 1.531200 | \n",
- " \n",
- " \n",
- " 1777 | \n",
- " 1.644400 | \n",
- " \n",
- " \n",
- " 1778 | \n",
- " 1.598000 | \n",
- " \n",
- " \n",
- " 1779 | \n",
- " 1.380400 | \n",
- " \n",
- " \n",
- " 1780 | \n",
- " 1.974700 | \n",
- " \n",
- " \n",
- " 1781 | \n",
- " 1.094100 | \n",
- " \n",
- " \n",
- " 1782 | \n",
- " 1.476000 | \n",
- " \n",
- " \n",
- " 1783 | \n",
- " 1.434500 | \n",
- " \n",
- " \n",
- " 1784 | \n",
- " 1.174300 | \n",
- " \n",
- " \n",
- " 1785 | \n",
- " 1.293600 | \n",
- " \n",
- " \n",
- " 1786 | \n",
- " 1.651100 | \n",
- " \n",
- " \n",
- " 1787 | \n",
- " 1.706500 | \n",
- " \n",
- " \n",
- " 1788 | \n",
- " 1.309400 | \n",
- " \n",
- " \n",
- " 1789 | \n",
- " 1.055200 | \n",
- " \n",
- " \n",
- " 1790 | \n",
- " 1.560100 | \n",
- " \n",
- " \n",
- " 1791 | \n",
- " 1.621100 | \n",
- " \n",
- " \n",
- " 1792 | \n",
- " 1.362200 | \n",
- " \n",
- " \n",
- " 1793 | \n",
- " 1.581300 | \n",
- " \n",
- " \n",
- " 1794 | \n",
- " 1.439300 | \n",
- " \n",
- " \n",
- " 1795 | \n",
- " 1.299800 | \n",
- " \n",
- " \n",
- " 1796 | \n",
- " 1.108900 | \n",
- " \n",
- " \n",
- " 1797 | \n",
- " 1.234900 | \n",
- " \n",
- " \n",
- " 1798 | \n",
- " 1.420900 | \n",
- " \n",
- " \n",
- " 1799 | \n",
- " 1.247500 | \n",
- " \n",
- " \n",
- " 1800 | \n",
- " 1.209700 | \n",
- " \n",
- " \n",
- " 1801 | \n",
- " 1.833500 | \n",
- " \n",
- " \n",
- " 1802 | \n",
- " 1.369300 | \n",
- " \n",
- " \n",
- " 1803 | \n",
- " 1.236900 | \n",
- " \n",
- " \n",
- " 1804 | \n",
- " 1.576300 | \n",
- " \n",
- " \n",
- " 1805 | \n",
- " 1.491300 | \n",
- " \n",
- " \n",
- " 1806 | \n",
- " 1.096700 | \n",
- " \n",
- " \n",
- " 1807 | \n",
- " 1.299100 | \n",
- " \n",
- " \n",
- " 1808 | \n",
- " 1.450900 | \n",
- " \n",
- " \n",
- " 1809 | \n",
- " 1.293600 | \n",
- " \n",
- " \n",
- " 1810 | \n",
- " 1.529600 | \n",
- " \n",
- " \n",
- " 1811 | \n",
- " 1.606500 | \n",
- " \n",
- " \n",
- " 1812 | \n",
- " 1.229800 | \n",
- " \n",
- " \n",
- " 1813 | \n",
- " 1.729600 | \n",
- " \n",
- " \n",
- " 1814 | \n",
- " 2.069400 | \n",
- " \n",
- " \n",
- " 1815 | \n",
- " 1.329100 | \n",
- " \n",
- " \n",
- " 1816 | \n",
- " 1.600400 | \n",
- " \n",
- " \n",
- " 1817 | \n",
- " 1.749900 | \n",
- " \n",
- " \n",
- " 1818 | \n",
- " 1.199500 | \n",
- " \n",
- " \n",
- " 1819 | \n",
- " 1.189900 | \n",
- " \n",
- " \n",
- " 1820 | \n",
- " 1.206800 | \n",
- " \n",
- " \n",
- " 1821 | \n",
- " 2.264400 | \n",
- " \n",
- " \n",
- " 1822 | \n",
- " 1.283800 | \n",
- " \n",
- " \n",
- " 1823 | \n",
- " 1.405200 | \n",
- " \n",
- " \n",
- " 1824 | \n",
- " 1.227800 | \n",
- " \n",
- " \n",
- " 1825 | \n",
- " 1.621800 | \n",
- " \n",
- " \n",
- " 1826 | \n",
- " 1.393800 | \n",
- " \n",
- " \n",
- " 1827 | \n",
- " 1.234300 | \n",
- " \n",
- " \n",
- " 1828 | \n",
- " 1.360500 | \n",
- " \n",
- " \n",
- " 1829 | \n",
- " 1.422900 | \n",
- " \n",
- " \n",
- " 1830 | \n",
- " 1.388800 | \n",
- " \n",
- " \n",
- " 1831 | \n",
- " 1.206300 | \n",
- " \n",
- " \n",
- " 1832 | \n",
- " 1.281400 | \n",
- " \n",
- " \n",
- " 1833 | \n",
- " 1.219400 | \n",
- " \n",
- " \n",
- " 1834 | \n",
- " 1.233900 | \n",
- " \n",
- " \n",
- " 1835 | \n",
- " 1.692200 | \n",
- " \n",
- " \n",
- " 1836 | \n",
- " 1.649800 | \n",
- " \n",
- " \n",
- " 1837 | \n",
- " 1.328300 | \n",
- " \n",
- " \n",
- " 1838 | \n",
- " 1.920600 | \n",
- " \n",
- " \n",
- " 1839 | \n",
- " 1.649000 | \n",
- " \n",
- " \n",
- " 1840 | \n",
- " 1.306800 | \n",
- " \n",
- " \n",
- " 1841 | \n",
- " 1.040500 | \n",
- " \n",
- " \n",
- " 1842 | \n",
- " 1.506200 | \n",
- " \n",
- " \n",
- " 1843 | \n",
- " 1.162700 | \n",
- " \n",
- " \n",
- " 1844 | \n",
- " 1.144300 | \n",
- " \n",
- " \n",
- " 1845 | \n",
- " 1.752300 | \n",
- " \n",
- " \n",
- " 1846 | \n",
- " 1.480600 | \n",
- " \n",
- " \n",
- " 1847 | \n",
- " 1.344200 | \n",
- " \n",
- " \n",
- " 1848 | \n",
- " 1.239000 | \n",
- " \n",
- " \n",
- " 1849 | \n",
- " 1.035800 | \n",
- " \n",
- " \n",
- " 1850 | \n",
- " 1.217000 | \n",
- " \n",
- " \n",
- " 1851 | \n",
- " 1.141900 | \n",
- " \n",
- " \n",
- " 1852 | \n",
- " 1.149500 | \n",
- " \n",
- " \n",
- " 1853 | \n",
- " 1.251000 | \n",
- " \n",
- " \n",
- " 1854 | \n",
- " 1.430700 | \n",
- " \n",
- " \n",
- " 1855 | \n",
- " 1.378100 | \n",
- " \n",
- " \n",
- " 1856 | \n",
- " 1.654700 | \n",
- " \n",
- " \n",
- " 1857 | \n",
- " 1.147900 | \n",
- " \n",
- " \n",
- " 1858 | \n",
- " 1.401800 | \n",
- " \n",
- " \n",
- " 1859 | \n",
- " 1.811800 | \n",
- " \n",
- " \n",
- " 1860 | \n",
- " 1.690600 | \n",
- " \n",
- " \n",
- " 1861 | \n",
- " 1.007700 | \n",
- " \n",
- " \n",
- " 1862 | \n",
- " 1.311000 | \n",
- " \n",
- " \n",
- " 1863 | \n",
- " 1.186500 | \n",
- " \n",
- " \n",
- " 1864 | \n",
- " 1.114800 | \n",
- " \n",
- " \n",
- " 1865 | \n",
- " 1.577400 | \n",
- " \n",
- " \n",
- " 1866 | \n",
- " 1.390000 | \n",
- " \n",
- " \n",
- " 1867 | \n",
- " 1.382800 | \n",
- " \n",
- " \n",
- " 1868 | \n",
- " 1.575000 | \n",
- " \n",
- " \n",
- " 1869 | \n",
- " 1.406900 | \n",
- " \n",
- " \n",
- " 1870 | \n",
- " 1.411900 | \n",
- " \n",
- " \n",
- " 1871 | \n",
- " 1.071300 | \n",
- " \n",
- " \n",
- " 1872 | \n",
- " 1.575200 | \n",
- " \n",
- " \n",
- " 1873 | \n",
- " 1.449300 | \n",
- " \n",
- " \n",
- " 1874 | \n",
- " 1.752000 | \n",
- " \n",
- " \n",
- " 1875 | \n",
- " 1.119500 | \n",
- " \n",
- " \n",
- " 1876 | \n",
- " 1.629200 | \n",
- " \n",
- " \n",
- " 1877 | \n",
- " 1.250900 | \n",
- " \n",
- " \n",
- " 1878 | \n",
- " 1.278500 | \n",
- " \n",
- " \n",
- " 1879 | \n",
- " 1.146100 | \n",
- " \n",
- " \n",
- " 1880 | \n",
- " 1.473300 | \n",
- " \n",
- " \n",
- " 1881 | \n",
- " 1.767300 | \n",
- " \n",
- " \n",
- " 1882 | \n",
- " 2.117000 | \n",
- " \n",
- " \n",
- " 1883 | \n",
- " 1.203400 | \n",
- " \n",
- " \n",
- " 1884 | \n",
- " 1.110900 | \n",
- " \n",
- " \n",
- " 1885 | \n",
- " 1.209700 | \n",
- " \n",
- " \n",
- " 1886 | \n",
- " 1.846700 | \n",
- " \n",
- " \n",
- " 1887 | \n",
- " 1.157100 | \n",
- " \n",
- " \n",
- " 1888 | \n",
- " 1.283200 | \n",
- " \n",
- " \n",
- " 1889 | \n",
- " 1.315900 | \n",
- " \n",
- " \n",
- " 1890 | \n",
- " 1.324700 | \n",
- " \n",
- " \n",
- " 1891 | \n",
- " 1.127500 | \n",
- " \n",
- " \n",
- " 1892 | \n",
- " 1.395200 | \n",
- " \n",
- " \n",
- " 1893 | \n",
- " 1.597100 | \n",
- " \n",
- " \n",
- " 1894 | \n",
- " 1.311900 | \n",
- " \n",
- " \n",
- " 1895 | \n",
- " 1.535100 | \n",
- " \n",
- " \n",
- " 1896 | \n",
- " 1.238000 | \n",
- " \n",
- " \n",
- " 1897 | \n",
- " 1.085500 | \n",
- " \n",
- " \n",
- " 1898 | \n",
- " 2.029100 | \n",
- " \n",
- " \n",
- " 1899 | \n",
- " 1.333500 | \n",
- " \n",
- " \n",
- " 1900 | \n",
- " 2.012700 | \n",
- " \n",
- " \n",
- " 1901 | \n",
- " 1.641400 | \n",
- " \n",
- " \n",
- " 1902 | \n",
- " 1.488000 | \n",
- " \n",
- " \n",
- " 1903 | \n",
- " 1.340500 | \n",
- " \n",
- " \n",
- " 1904 | \n",
- " 1.455900 | \n",
- " \n",
- " \n",
- " 1905 | \n",
- " 1.677300 | \n",
- " \n",
- " \n",
- " 1906 | \n",
- " 1.308700 | \n",
- " \n",
- " \n",
- " 1907 | \n",
- " 1.223900 | \n",
- " \n",
- " \n",
- " 1908 | \n",
- " 1.346900 | \n",
- " \n",
- " \n",
- " 1909 | \n",
- " 1.164800 | \n",
- " \n",
- " \n",
- " 1910 | \n",
- " 1.174300 | \n",
- " \n",
- " \n",
- " 1911 | \n",
- " 1.026200 | \n",
- " \n",
- " \n",
- " 1912 | \n",
- " 1.380600 | \n",
- " \n",
- " \n",
- " 1913 | \n",
- " 1.522100 | \n",
- " \n",
- " \n",
- " 1914 | \n",
- " 1.313400 | \n",
- " \n",
- " \n",
- " 1915 | \n",
- " 1.511100 | \n",
- " \n",
- " \n",
- " 1916 | \n",
- " 1.089300 | \n",
- " \n",
- " \n",
- " 1917 | \n",
- " 1.535000 | \n",
- " \n",
- " \n",
- " 1918 | \n",
- " 1.491000 | \n",
- " \n",
- " \n",
- " 1919 | \n",
- " 2.140200 | \n",
- " \n",
- " \n",
- " 1920 | \n",
- " 1.641000 | \n",
- " \n",
- " \n",
- " 1921 | \n",
- " 1.373200 | \n",
- " \n",
- " \n",
- " 1922 | \n",
- " 1.744200 | \n",
- " \n",
- " \n",
- " 1923 | \n",
- " 1.527400 | \n",
- " \n",
- " \n",
- " 1924 | \n",
- " 1.944600 | \n",
- " \n",
- " \n",
- " 1925 | \n",
- " 1.717700 | \n",
- " \n",
- " \n",
- " 1926 | \n",
- " 1.371700 | \n",
- " \n",
- " \n",
- " 1927 | \n",
- " 1.276700 | \n",
- " \n",
- " \n",
- " 1928 | \n",
- " 1.350800 | \n",
- " \n",
- " \n",
- " 1929 | \n",
- " 1.415100 | \n",
- " \n",
- " \n",
- " 1930 | \n",
- " 1.429200 | \n",
- " \n",
- " \n",
- " 1931 | \n",
- " 1.726000 | \n",
- " \n",
- " \n",
- " 1932 | \n",
- " 1.432200 | \n",
- " \n",
- " \n",
- " 1933 | \n",
- " 1.130500 | \n",
- " \n",
- " \n",
- " 1934 | \n",
- " 1.152500 | \n",
- " \n",
- " \n",
- " 1935 | \n",
- " 1.406900 | \n",
- " \n",
- " \n",
- " 1936 | \n",
- " 0.945800 | \n",
- " \n",
- " \n",
- " 1937 | \n",
- " 2.123700 | \n",
- " \n",
- " \n",
- " 1938 | \n",
- " 1.462600 | \n",
- " \n",
- " \n",
- " 1939 | \n",
- " 1.302800 | \n",
- " \n",
- " \n",
- " 1940 | \n",
- " 1.542700 | \n",
- " \n",
- " \n",
- " 1941 | \n",
- " 1.646700 | \n",
- " \n",
- " \n",
- " 1942 | \n",
- " 1.091100 | \n",
- " \n",
- " \n",
- " 1943 | \n",
- " 1.525800 | \n",
- " \n",
- " \n",
- " 1944 | \n",
- " 1.805100 | \n",
- " \n",
- " \n",
- " 1945 | \n",
- " 1.385600 | \n",
- " \n",
- " \n",
- " 1946 | \n",
- " 1.384300 | \n",
- " \n",
- " \n",
- " 1947 | \n",
- " 1.424400 | \n",
- " \n",
- " \n",
- " 1948 | \n",
- " 1.356500 | \n",
- " \n",
- " \n",
- " 1949 | \n",
- " 1.430500 | \n",
- " \n",
- " \n",
- " 1950 | \n",
- " 1.129100 | \n",
- " \n",
- " \n",
- " 1951 | \n",
- " 1.396000 | \n",
- " \n",
- " \n",
- " 1952 | \n",
- " 1.267200 | \n",
- " \n",
- " \n",
- " 1953 | \n",
- " 1.109400 | \n",
- " \n",
- " \n",
- " 1954 | \n",
- " 1.476600 | \n",
- " \n",
- " \n",
- " 1955 | \n",
- " 1.661100 | \n",
- " \n",
- " \n",
- " 1956 | \n",
- " 1.362800 | \n",
- " \n",
- " \n",
- " 1957 | \n",
- " 1.185100 | \n",
- " \n",
- " \n",
- " 1958 | \n",
- " 1.316000 | \n",
- " \n",
- " \n",
- " 1959 | \n",
- " 1.235400 | \n",
- " \n",
- " \n",
- " 1960 | \n",
- " 1.674900 | \n",
- " \n",
- " \n",
- " 1961 | \n",
- " 1.447400 | \n",
- " \n",
- " \n",
- " 1962 | \n",
- " 1.646300 | \n",
- " \n",
- " \n",
- " 1963 | \n",
- " 1.040400 | \n",
- " \n",
- " \n",
- " 1964 | \n",
- " 1.741700 | \n",
- " \n",
- " \n",
- " 1965 | \n",
- " 1.412700 | \n",
- " \n",
- " \n",
- " 1966 | \n",
- " 1.575200 | \n",
- " \n",
- " \n",
- " 1967 | \n",
- " 1.043200 | \n",
- " \n",
- " \n",
- " 1968 | \n",
- " 1.716600 | \n",
- " \n",
- " \n",
- " 1969 | \n",
- " 1.285700 | \n",
- " \n",
- " \n",
- " 1970 | \n",
- " 1.453900 | \n",
- " \n",
- " \n",
- " 1971 | \n",
- " 1.383000 | \n",
- " \n",
- " \n",
- " 1972 | \n",
- " 1.758500 | \n",
- " \n",
- " \n",
- " 1973 | \n",
- " 1.173800 | \n",
- " \n",
- " \n",
- " 1974 | \n",
- " 1.188800 | \n",
- " \n",
- " \n",
- " 1975 | \n",
- " 1.487500 | \n",
- " \n",
- " \n",
- " 1976 | \n",
- " 1.367200 | \n",
- " \n",
- " \n",
- " 1977 | \n",
- " 1.105000 | \n",
- " \n",
- " \n",
- " 1978 | \n",
- " 1.591300 | \n",
- " \n",
- " \n",
- " 1979 | \n",
- " 1.161100 | \n",
- " \n",
- " \n",
- " 1980 | \n",
- " 1.501300 | \n",
- " \n",
- " \n",
- " 1981 | \n",
- " 1.301500 | \n",
- " \n",
- " \n",
- " 1982 | \n",
- " 1.481200 | \n",
- " \n",
- " \n",
- " 1983 | \n",
- " 1.153500 | \n",
- " \n",
- " \n",
- " 1984 | \n",
- " 1.289400 | \n",
- " \n",
- " \n",
- " 1985 | \n",
- " 1.539300 | \n",
- " \n",
- " \n",
- " 1986 | \n",
- " 1.703700 | \n",
- " \n",
- " \n",
- " 1987 | \n",
- " 1.267300 | \n",
- " \n",
- " \n",
- " 1988 | \n",
- " 1.294200 | \n",
- " \n",
- " \n",
- " 1989 | \n",
- " 1.357100 | \n",
- " \n",
- " \n",
- " 1990 | \n",
- " 1.253700 | \n",
- " \n",
- " \n",
- " 1991 | \n",
- " 1.334600 | \n",
- " \n",
- " \n",
- " 1992 | \n",
- " 1.718800 | \n",
- " \n",
- " \n",
- " 1993 | \n",
- " 1.563400 | \n",
- " \n",
- " \n",
- " 1994 | \n",
- " 1.647900 | \n",
- " \n",
- " \n",
- " 1995 | \n",
- " 1.547600 | \n",
- " \n",
- " \n",
- " 1996 | \n",
- " 1.389200 | \n",
- " \n",
- " \n",
- " 1997 | \n",
- " 1.322900 | \n",
- " \n",
- " \n",
- " 1998 | \n",
- " 1.340500 | \n",
- " \n",
- " \n",
- " 1999 | \n",
- " 1.504700 | \n",
- " \n",
- " \n",
- " 2000 | \n",
- " 1.334000 | \n",
- " \n",
- " \n",
- " 2001 | \n",
- " 1.203100 | \n",
- " \n",
- " \n",
- " 2002 | \n",
- " 1.322800 | \n",
- " \n",
- " \n",
- " 2003 | \n",
- " 1.123500 | \n",
- " \n",
- " \n",
- " 2004 | \n",
- " 1.375200 | \n",
- " \n",
- " \n",
- " 2005 | \n",
- " 1.306000 | \n",
- " \n",
- " \n",
- " 2006 | \n",
- " 1.186800 | \n",
- " \n",
- " \n",
- " 2007 | \n",
- " 1.512000 | \n",
- " \n",
- " \n",
- " 2008 | \n",
- " 1.284300 | \n",
- " \n",
- " \n",
- " 2009 | \n",
- " 1.442800 | \n",
- " \n",
- " \n",
- " 2010 | \n",
- " 1.155800 | \n",
- " \n",
- " \n",
- " 2011 | \n",
- " 1.905600 | \n",
- " \n",
- " \n",
- " 2012 | \n",
- " 1.182600 | \n",
- " \n",
- " \n",
- " 2013 | \n",
- " 1.731600 | \n",
- " \n",
- " \n",
- " 2014 | \n",
- " 1.117500 | \n",
- " \n",
- " \n",
- " 2015 | \n",
- " 1.741300 | \n",
- " \n",
- " \n",
- " 2016 | \n",
- " 1.252900 | \n",
- " \n",
- " \n",
- " 2017 | \n",
- " 1.029700 | \n",
- " \n",
- " \n",
- " 2018 | \n",
- " 1.505600 | \n",
- " \n",
- " \n",
- " 2019 | \n",
- " 1.401000 | \n",
- " \n",
- " \n",
- " 2020 | \n",
- " 1.187700 | \n",
- " \n",
- " \n",
- " 2021 | \n",
- " 1.833800 | \n",
- " \n",
- " \n",
- " 2022 | \n",
- " 1.286800 | \n",
- " \n",
- " \n",
- " 2023 | \n",
- " 1.372400 | \n",
- " \n",
- " \n",
- " 2024 | \n",
- " 1.391300 | \n",
- " \n",
- " \n",
- " 2025 | \n",
- " 1.304800 | \n",
- " \n",
- " \n",
- " 2026 | \n",
- " 1.163900 | \n",
- " \n",
- " \n",
- " 2027 | \n",
- " 1.471400 | \n",
- " \n",
- " \n",
- " 2028 | \n",
- " 1.281000 | \n",
- " \n",
- " \n",
- " 2029 | \n",
- " 1.183200 | \n",
- " \n",
- " \n",
- " 2030 | \n",
- " 1.678900 | \n",
- " \n",
- " \n",
- " 2031 | \n",
- " 1.595700 | \n",
- " \n",
- " \n",
- " 2032 | \n",
- " 1.195000 | \n",
- " \n",
- " \n",
- " 2033 | \n",
- " 1.263200 | \n",
- " \n",
- " \n",
- " 2034 | \n",
- " 1.158200 | \n",
- " \n",
- " \n",
- " 2035 | \n",
- " 1.103000 | \n",
- " \n",
- " \n",
- " 2036 | \n",
- " 1.349300 | \n",
- " \n",
- " \n",
- " 2037 | \n",
- " 1.183100 | \n",
- " \n",
- " \n",
- " 2038 | \n",
- " 1.350600 | \n",
- " \n",
- " \n",
- " 2039 | \n",
- " 1.523100 | \n",
- " \n",
- " \n",
- " 2040 | \n",
- " 1.237700 | \n",
- " \n",
- " \n",
- " 2041 | \n",
- " 1.607700 | \n",
- " \n",
- " \n",
- " 2042 | \n",
- " 1.245600 | \n",
- " \n",
- " \n",
- " 2043 | \n",
- " 1.104900 | \n",
- " \n",
- " \n",
- " 2044 | \n",
- " 1.557800 | \n",
- " \n",
- " \n",
- " 2045 | \n",
- " 1.367800 | \n",
- " \n",
- " \n",
- " 2046 | \n",
- " 1.236800 | \n",
- " \n",
- " \n",
- " 2047 | \n",
- " 1.188600 | \n",
- " \n",
- " \n",
- " 2048 | \n",
- " 1.180500 | \n",
- " \n",
- " \n",
- " 2049 | \n",
- " 1.279400 | \n",
- " \n",
- " \n",
- " 2050 | \n",
- " 1.853500 | \n",
- " \n",
- " \n",
- " 2051 | \n",
- " 1.236400 | \n",
- " \n",
- " \n",
- " 2052 | \n",
- " 1.266600 | \n",
- " \n",
- " \n",
- " 2053 | \n",
- " 1.298100 | \n",
- " \n",
- " \n",
- " 2054 | \n",
- " 1.339700 | \n",
- " \n",
- " \n",
- " 2055 | \n",
- " 1.247300 | \n",
- " \n",
- " \n",
- " 2056 | \n",
- " 1.892200 | \n",
- " \n",
- " \n",
- " 2057 | \n",
- " 1.289800 | \n",
- " \n",
- " \n",
- " 2058 | \n",
- " 1.443800 | \n",
- " \n",
- " \n",
- " 2059 | \n",
- " 1.269000 | \n",
- " \n",
- " \n",
- " 2060 | \n",
- " 1.321000 | \n",
- " \n",
- " \n",
- " 2061 | \n",
- " 1.594500 | \n",
- " \n",
- " \n",
- " 2062 | \n",
- " 1.992100 | \n",
- " \n",
- " \n",
- " 2063 | \n",
- " 1.409600 | \n",
- " \n",
- " \n",
- " 2064 | \n",
- " 1.185900 | \n",
- " \n",
- " \n",
- " 2065 | \n",
- " 1.257600 | \n",
- " \n",
- " \n",
- " 2066 | \n",
- " 1.630700 | \n",
- " \n",
- " \n",
- " 2067 | \n",
- " 1.443100 | \n",
- " \n",
- " \n",
- " 2068 | \n",
- " 1.848100 | \n",
- " \n",
- " \n",
- " 2069 | \n",
- " 1.965000 | \n",
- " \n",
- " \n",
- " 2070 | \n",
- " 1.972600 | \n",
- " \n",
- " \n",
- " 2071 | \n",
- " 1.723600 | \n",
- " \n",
- " \n",
- " 2072 | \n",
- " 1.100800 | \n",
- " \n",
- " \n",
- " 2073 | \n",
- " 1.829900 | \n",
- " \n",
- " \n",
- " 2074 | \n",
- " 1.374600 | \n",
- " \n",
- " \n",
- " 2075 | \n",
- " 1.558600 | \n",
- " \n",
- " \n",
- " 2076 | \n",
- " 1.320900 | \n",
- " \n",
- " \n",
- " 2077 | \n",
- " 1.538300 | \n",
- " \n",
- " \n",
- " 2078 | \n",
- " 1.125100 | \n",
- " \n",
- " \n",
- " 2079 | \n",
- " 1.539000 | \n",
- " \n",
- " \n",
- " 2080 | \n",
- " 1.351400 | \n",
- " \n",
- " \n",
- " 2081 | \n",
- " 1.666900 | \n",
- " \n",
- " \n",
- " 2082 | \n",
- " 1.358900 | \n",
- " \n",
- " \n",
- " 2083 | \n",
- " 1.170800 | \n",
- " \n",
- " \n",
- " 2084 | \n",
- " 1.263400 | \n",
- " \n",
- " \n",
- " 2085 | \n",
- " 1.038400 | \n",
- " \n",
- " \n",
- " 2086 | \n",
- " 1.350100 | \n",
- " \n",
- " \n",
- " 2087 | \n",
- " 1.527600 | \n",
- " \n",
- " \n",
- " 2088 | \n",
- " 1.416600 | \n",
- " \n",
- " \n",
- " 2089 | \n",
- " 1.632500 | \n",
- " \n",
- " \n",
- " 2090 | \n",
- " 1.022900 | \n",
- " \n",
- " \n",
- " 2091 | \n",
- " 1.270300 | \n",
- " \n",
- " \n",
- " 2092 | \n",
- " 1.265800 | \n",
- " \n",
- " \n",
- " 2093 | \n",
- " 1.895400 | \n",
- " \n",
- " \n",
- " 2094 | \n",
- " 1.294000 | \n",
- " \n",
- " \n",
- " 2095 | \n",
- " 1.276000 | \n",
- " \n",
- " \n",
- " 2096 | \n",
- " 1.436200 | \n",
- " \n",
- " \n",
- " 2097 | \n",
- " 1.248000 | \n",
- " \n",
- " \n",
- " 2098 | \n",
- " 1.505700 | \n",
- " \n",
- " \n",
- " 2099 | \n",
- " 1.201300 | \n",
- " \n",
- " \n",
- " 2100 | \n",
- " 1.612800 | \n",
- " \n",
- " \n",
- " 2101 | \n",
- " 1.577500 | \n",
- " \n",
- " \n",
- " 2102 | \n",
- " 2.045800 | \n",
- " \n",
- " \n",
- " 2103 | \n",
- " 1.448800 | \n",
- " \n",
- " \n",
- " 2104 | \n",
- " 1.463300 | \n",
- " \n",
- " \n",
- " 2105 | \n",
- " 1.385300 | \n",
- " \n",
- " \n",
- " 2106 | \n",
- " 1.318200 | \n",
- " \n",
- " \n",
- " 2107 | \n",
- " 1.241900 | \n",
- " \n",
- " \n",
- " 2108 | \n",
- " 2.427100 | \n",
- " \n",
- " \n",
- " 2109 | \n",
- " 1.897000 | \n",
- " \n",
- " \n",
- " 2110 | \n",
- " 2.441200 | \n",
- " \n",
- " \n",
- " 2111 | \n",
- " 1.286000 | \n",
- " \n",
- " \n",
- " 2112 | \n",
- " 1.421300 | \n",
- " \n",
- " \n",
- " 2113 | \n",
- " 1.428900 | \n",
- " \n",
- " \n",
- " 2114 | \n",
- " 1.471300 | \n",
- " \n",
- " \n",
- " 2115 | \n",
- " 1.356700 | \n",
- " \n",
- " \n",
- " 2116 | \n",
- " 1.223000 | \n",
- " \n",
- " \n",
- " 2117 | \n",
- " 1.253100 | \n",
- " \n",
- " \n",
- " 2118 | \n",
- " 1.542300 | \n",
- " \n",
- " \n",
- " 2119 | \n",
- " 1.530200 | \n",
- " \n",
- " \n",
- " 2120 | \n",
- " 1.381900 | \n",
- " \n",
- " \n",
- " 2121 | \n",
- " 1.474300 | \n",
- " \n",
- " \n",
- " 2122 | \n",
- " 1.542500 | \n",
- " \n",
- " \n",
- " 2123 | \n",
- " 1.249200 | \n",
- " \n",
- " \n",
- " 2124 | \n",
- " 1.272600 | \n",
- " \n",
- " \n",
- " 2125 | \n",
- " 1.536700 | \n",
- " \n",
- " \n",
- " 2126 | \n",
- " 1.666900 | \n",
- " \n",
- " \n",
- " 2127 | \n",
- " 1.646300 | \n",
- " \n",
- " \n",
- " 2128 | \n",
- " 1.243100 | \n",
- " \n",
- " \n",
- " 2129 | \n",
- " 1.347400 | \n",
- " \n",
- " \n",
- " 2130 | \n",
- " 1.240400 | \n",
- " \n",
- " \n",
- " 2131 | \n",
- " 1.707300 | \n",
- " \n",
- " \n",
- " 2132 | \n",
- " 1.480700 | \n",
- " \n",
- " \n",
- " 2133 | \n",
- " 1.199700 | \n",
- " \n",
- " \n",
- " 2134 | \n",
- " 1.202100 | \n",
- " \n",
- " \n",
- " 2135 | \n",
- " 1.802800 | \n",
- " \n",
- " \n",
- " 2136 | \n",
- " 1.467500 | \n",
- " \n",
- " \n",
- " 2137 | \n",
- " 1.199000 | \n",
- " \n",
- " \n",
- " 2138 | \n",
- " 1.374700 | \n",
- " \n",
- " \n",
- " 2139 | \n",
- " 1.688600 | \n",
- " \n",
- " \n",
- " 2140 | \n",
- " 1.698300 | \n",
- " \n",
- " \n",
- " 2141 | \n",
- " 1.324000 | \n",
- " \n",
- " \n",
- " 2142 | \n",
- " 1.414500 | \n",
- " \n",
- " \n",
- " 2143 | \n",
- " 1.875900 | \n",
- " \n",
- " \n",
- " 2144 | \n",
- " 1.325200 | \n",
- " \n",
- " \n",
- " 2145 | \n",
- " 1.566500 | \n",
- " \n",
- " \n",
- " 2146 | \n",
- " 1.250600 | \n",
- " \n",
- " \n",
- " 2147 | \n",
- " 1.428000 | \n",
- " \n",
- " \n",
- " 2148 | \n",
- " 1.498400 | \n",
- " \n",
- " \n",
- " 2149 | \n",
- " 1.564300 | \n",
- " \n",
- " \n",
- " 2150 | \n",
- " 1.161100 | \n",
- " \n",
- " \n",
- " 2151 | \n",
- " 1.302200 | \n",
- " \n",
- " \n",
- " 2152 | \n",
- " 2.096400 | \n",
- " \n",
- " \n",
- " 2153 | \n",
- " 2.035500 | \n",
- " \n",
- " \n",
- " 2154 | \n",
- " 1.613100 | \n",
- " \n",
- " \n",
- " 2155 | \n",
- " 1.231100 | \n",
- " \n",
- " \n",
- " 2156 | \n",
- " 1.586100 | \n",
- " \n",
- " \n",
- " 2157 | \n",
- " 1.632300 | \n",
- " \n",
- " \n",
- " 2158 | \n",
- " 1.241100 | \n",
- " \n",
- " \n",
- " 2159 | \n",
- " 1.634800 | \n",
- " \n",
- " \n",
- " 2160 | \n",
- " 1.406300 | \n",
- " \n",
- " \n",
- " 2161 | \n",
- " 1.202800 | \n",
- " \n",
- " \n",
- " 2162 | \n",
- " 1.786200 | \n",
- " \n",
- " \n",
- " 2163 | \n",
- " 1.317200 | \n",
- " \n",
- " \n",
- " 2164 | \n",
- " 1.662700 | \n",
- " \n",
- " \n",
- " 2165 | \n",
- " 1.107200 | \n",
- " \n",
- " \n",
- " 2166 | \n",
- " 1.316000 | \n",
- " \n",
- " \n",
- " 2167 | \n",
- " 1.307700 | \n",
- " \n",
- " \n",
- " 2168 | \n",
- " 1.530900 | \n",
- " \n",
- " \n",
- " 2169 | \n",
- " 1.149300 | \n",
- " \n",
- " \n",
- " 2170 | \n",
- " 1.932500 | \n",
- " \n",
- " \n",
- " 2171 | \n",
- " 1.565200 | \n",
- " \n",
- " \n",
- " 2172 | \n",
- " 1.171800 | \n",
- " \n",
- " \n",
- " 2173 | \n",
- " 1.433600 | \n",
- " \n",
- " \n",
- " 2174 | \n",
- " 1.202100 | \n",
- " \n",
- " \n",
- " 2175 | \n",
- " 1.938400 | \n",
- " \n",
- " \n",
- " 2176 | \n",
- " 1.752000 | \n",
- " \n",
- " \n",
- " 2177 | \n",
- " 1.347400 | \n",
- " \n",
- " \n",
- " 2178 | \n",
- " 1.149800 | \n",
- " \n",
- " \n",
- " 2179 | \n",
- " 1.058000 | \n",
- " \n",
- " \n",
- " 2180 | \n",
- " 1.166900 | \n",
- " \n",
- " \n",
- " 2181 | \n",
- " 1.536500 | \n",
- " \n",
- " \n",
- " 2182 | \n",
- " 1.125400 | \n",
- " \n",
- " \n",
- " 2183 | \n",
- " 1.385100 | \n",
- " \n",
- " \n",
- " 2184 | \n",
- " 1.353000 | \n",
- " \n",
- " \n",
- " 2185 | \n",
- " 1.516800 | \n",
- " \n",
- " \n",
- " 2186 | \n",
- " 1.530400 | \n",
- " \n",
- " \n",
- " 2187 | \n",
- " 1.435800 | \n",
- " \n",
- " \n",
- " 2188 | \n",
- " 1.716300 | \n",
- " \n",
- " \n",
- " 2189 | \n",
- " 1.272100 | \n",
- " \n",
- " \n",
- " 2190 | \n",
- " 2.123100 | \n",
- " \n",
- " \n",
- " 2191 | \n",
- " 1.586500 | \n",
- " \n",
- " \n",
- " 2192 | \n",
- " 1.136500 | \n",
- " \n",
- " \n",
- " 2193 | \n",
- " 1.392300 | \n",
- " \n",
- " \n",
- " 2194 | \n",
- " 1.025900 | \n",
- " \n",
- " \n",
- " 2195 | \n",
- " 1.360300 | \n",
- " \n",
- " \n",
- " 2196 | \n",
- " 1.496100 | \n",
- " \n",
- " \n",
- " 2197 | \n",
- " 2.067000 | \n",
- " \n",
- " \n",
- " 2198 | \n",
- " 1.226700 | \n",
- " \n",
- " \n",
- " 2199 | \n",
- " 1.702900 | \n",
- " \n",
- " \n",
- " 2200 | \n",
- " 1.249700 | \n",
- " \n",
- " \n",
- " 2201 | \n",
- " 1.100700 | \n",
- " \n",
- " \n",
- " 2202 | \n",
- " 0.975700 | \n",
- " \n",
- " \n",
- " 2203 | \n",
- " 1.589000 | \n",
- " \n",
- " \n",
- " 2204 | \n",
- " 1.240000 | \n",
- " \n",
- " \n",
- " 2205 | \n",
- " 1.398200 | \n",
- " \n",
- " \n",
- " 2206 | \n",
- " 1.490700 | \n",
- " \n",
- " \n",
- " 2207 | \n",
- " 1.447900 | \n",
- " \n",
- " \n",
- " 2208 | \n",
- " 1.478700 | \n",
- " \n",
- " \n",
- " 2209 | \n",
- " 1.427600 | \n",
- " \n",
- " \n",
- " 2210 | \n",
- " 1.725500 | \n",
- " \n",
- " \n",
- " 2211 | \n",
- " 1.476800 | \n",
- " \n",
- " \n",
- " 2212 | \n",
- " 1.958500 | \n",
- " \n",
- " \n",
- " 2213 | \n",
- " 1.426400 | \n",
- " \n",
- " \n",
- " 2214 | \n",
- " 1.639300 | \n",
- " \n",
- " \n",
- " 2215 | \n",
- " 1.646200 | \n",
- " \n",
- " \n",
- " 2216 | \n",
- " 1.823300 | \n",
- " \n",
- " \n",
- " 2217 | \n",
- " 1.333400 | \n",
- " \n",
- " \n",
- " 2218 | \n",
- " 1.142500 | \n",
- " \n",
- " \n",
- " 2219 | \n",
- " 1.508600 | \n",
- " \n",
- " \n",
- " 2220 | \n",
- " 2.200100 | \n",
- " \n",
- " \n",
- " 2221 | \n",
- " 1.579700 | \n",
- " \n",
- " \n",
- " 2222 | \n",
- " 1.151400 | \n",
- " \n",
- " \n",
- " 2223 | \n",
- " 1.449600 | \n",
- " \n",
- " \n",
- " 2224 | \n",
- " 1.169100 | \n",
- " \n",
- " \n",
- " 2225 | \n",
- " 1.495000 | \n",
- " \n",
- " \n",
- " 2226 | \n",
- " 1.555500 | \n",
- " \n",
- " \n",
- " 2227 | \n",
- " 1.301300 | \n",
- " \n",
- " \n",
- " 2228 | \n",
- " 1.158000 | \n",
- " \n",
- " \n",
- " 2229 | \n",
- " 1.273100 | \n",
- " \n",
- " \n",
- " 2230 | \n",
- " 1.725400 | \n",
- " \n",
- " \n",
- " 2231 | \n",
- " 1.451500 | \n",
- " \n",
- " \n",
- " 2232 | \n",
- " 1.227900 | \n",
- " \n",
- " \n",
- " 2233 | \n",
- " 1.666000 | \n",
- " \n",
- " \n",
- " 2234 | \n",
- " 1.284600 | \n",
- " \n",
- " \n",
- " 2235 | \n",
- " 1.223300 | \n",
- " \n",
- " \n",
- " 2236 | \n",
- " 1.857500 | \n",
- " \n",
- " \n",
- " 2237 | \n",
- " 1.610700 | \n",
- " \n",
- " \n",
- " 2238 | \n",
- " 1.853600 | \n",
- " \n",
- " \n",
- " 2239 | \n",
- " 1.503600 | \n",
- " \n",
- " \n",
- " 2240 | \n",
- " 1.569900 | \n",
- " \n",
- " \n",
- " 2241 | \n",
- " 1.335400 | \n",
- " \n",
- " \n",
- " 2242 | \n",
- " 1.489300 | \n",
- " \n",
- " \n",
- " 2243 | \n",
- " 1.528300 | \n",
- " \n",
- " \n",
- " 2244 | \n",
- " 1.360300 | \n",
- " \n",
- " \n",
- " 2245 | \n",
- " 1.085500 | \n",
- " \n",
- " \n",
- " 2246 | \n",
- " 1.272100 | \n",
- " \n",
- " \n",
- " 2247 | \n",
- " 1.243700 | \n",
- " \n",
- " \n",
- " 2248 | \n",
- " 1.471000 | \n",
- " \n",
- " \n",
- " "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "trainer_stats = trainer.train()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "c4c8f35c",
- "metadata": {
- "cellView": "form",
- "execution": {
- "iopub.execute_input": "2024-11-20T03:54:09.565224Z",
- "iopub.status.busy": "2024-11-20T03:54:09.564605Z",
- "iopub.status.idle": "2024-11-20T03:54:09.570920Z",
- "shell.execute_reply": "2024-11-20T03:54:09.570099Z"
- },
- "id": "pCqnaKmlO1U9",
- "outputId": "cf63d152-e152-468c-ba0d-938e0d2f71a0",
- "papermill": {
- "duration": 0.079663,
- "end_time": "2024-11-20T03:54:09.572687",
- "exception": false,
- "start_time": "2024-11-20T03:54:09.493024",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "31481.3839 seconds used for training.\n",
- "524.69 minutes used for training.\n",
- "Peak reserved memory = 9.363 GB.\n",
- "Peak reserved memory for training = 3.191 GB.\n",
- "Peak reserved memory % of max memory = 63.517 %.\n",
- "Peak reserved memory for training % of max memory = 21.647 %.\n"
- ]
- }
- ],
- "source": [
- "#@title Show final memory and time stats\n",
- "used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
- "used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n",
- "used_percentage = round(used_memory /max_memory*100, 3)\n",
- "lora_percentage = round(used_memory_for_lora/max_memory*100, 3)\n",
- "print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n",
- "print(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\n",
- "print(f\"Peak reserved memory = {used_memory} GB.\")\n",
- "print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n",
- "print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n",
- "print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "6176fe1e",
- "metadata": {
- "id": "ekOmTR1hSNcr",
- "papermill": {
- "duration": 0.070529,
- "end_time": "2024-11-20T03:54:09.714353",
- "exception": false,
- "start_time": "2024-11-20T03:54:09.643824",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "\n",
- "### Inference\n",
- "Let's run the model! You can change the instruction and input - leave the output blank!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "04171c34",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-20T03:54:09.856688Z",
- "iopub.status.busy": "2024-11-20T03:54:09.855912Z",
- "iopub.status.idle": "2024-11-20T03:54:09.860764Z",
- "shell.execute_reply": "2024-11-20T03:54:09.859922Z"
- },
- "id": "kR3gIAX-SM2q",
- "outputId": "5b71f982-38c0-44c8-a4e5-58cd20b5a585",
- "papermill": {
- "duration": 0.077355,
- "end_time": "2024-11-20T03:54:09.862368",
- "exception": false,
- "start_time": "2024-11-20T03:54:09.785013",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "if False:\n",
- " # alpaca_prompt = Copied from above\n",
- " FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
- " inputs = tokenizer(\n",
- " [\n",
- " alpaca_prompt.format(\n",
- " \"Continue the fibonnaci sequence.\", # instruction\n",
- " \"1, 1, 2, 3, 5, 8\", # input\n",
- " \"\", # output - leave this blank for generation!\n",
- " )\n",
- " ], return_tensors = \"pt\").to(\"cuda\")\n",
- "\n",
- " outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
- " tokenizer.batch_decode(outputs)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "ec51acf7",
- "metadata": {
- "id": "CrSvZObor0lY",
- "papermill": {
- "duration": 0.070507,
- "end_time": "2024-11-20T03:54:10.004648",
- "exception": false,
- "start_time": "2024-11-20T03:54:09.934141",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- " You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "id": "97035490",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-20T03:54:10.145654Z",
- "iopub.status.busy": "2024-11-20T03:54:10.145402Z",
- "iopub.status.idle": "2024-11-20T03:54:10.150359Z",
- "shell.execute_reply": "2024-11-20T03:54:10.149572Z"
- },
- "id": "e2pEuRb1r2Vg",
- "outputId": "084aab62-2122-436a-c0cb-8871986640eb",
- "papermill": {
- "duration": 0.077256,
- "end_time": "2024-11-20T03:54:10.151976",
- "exception": false,
- "start_time": "2024-11-20T03:54:10.074720",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "if False:\n",
- " # alpaca_prompt = Copied from above\n",
- " FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
- " inputs = tokenizer(\n",
- " [\n",
- " alpaca_prompt.format(\n",
- " \"Continue the fibonnaci sequence.\", # instruction\n",
- " \"1, 1, 2, 3, 5, 8\", # input\n",
- " \"\", # output - leave this blank for generation!\n",
- " )\n",
- " ], return_tensors = \"pt\").to(\"cuda\")\n",
- "\n",
- " from transformers import TextStreamer\n",
- " text_streamer = TextStreamer(tokenizer)\n",
- " _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a4179ebd",
- "metadata": {
- "id": "uMuVrWbjAzhc",
- "papermill": {
- "duration": 0.070519,
- "end_time": "2024-11-20T03:54:10.292849",
- "exception": false,
- "start_time": "2024-11-20T03:54:10.222330",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "\n",
- "### Saving, loading finetuned models\n",
- "To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n",
- "\n",
- "**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "id": "3974619b",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-20T03:54:10.434709Z",
- "iopub.status.busy": "2024-11-20T03:54:10.434458Z",
- "iopub.status.idle": "2024-11-20T03:54:15.042600Z",
- "shell.execute_reply": "2024-11-20T03:54:15.041442Z"
- },
- "id": "upcOlWe7A1vc",
- "papermill": {
- "duration": 4.681486,
- "end_time": "2024-11-20T03:54:15.044402",
- "exception": false,
- "start_time": "2024-11-20T03:54:10.362916",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "20ebd44d861249a9bbba6b4d7cf7a1af",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "README.md: 0%| | 0.00/615 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5699440a265c4a44a6f21a6551c0a49e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/1 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "208d530d5bc9489c84b120adee331875",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "adapter_model.safetensors: 0%| | 0.00/336M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Saved model to https://huggingface.co/scoliono/groupchat_lora_abliterated_instruct-3.1-8b\n"
- ]
- }
- ],
- "source": [
- "#model.save_pretrained(\"lora_model\") # Local saving\n",
- "from kaggle_secrets import UserSecretsClient\n",
- "user_secrets = UserSecretsClient()\n",
- "hf_token = user_secrets.get_secret(\"hf_token\")\n",
- "\n",
- "model.push_to_hub(\"scoliono/groupchat_lora_abliterated_instruct-3.1-8b\", token = hf_token)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "28be027e",
- "metadata": {
- "id": "AEEcJ4qfC7Lp",
- "papermill": {
- "duration": 0.070774,
- "end_time": "2024-11-20T03:54:15.188324",
- "exception": false,
- "start_time": "2024-11-20T03:54:15.117550",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "id": "f190efeb",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-20T03:54:15.329954Z",
- "iopub.status.busy": "2024-11-20T03:54:15.329369Z",
- "iopub.status.idle": "2024-11-20T03:54:15.334813Z",
- "shell.execute_reply": "2024-11-20T03:54:15.333988Z"
- },
- "id": "MKX_XKs_BNZR",
- "outputId": "05e5a193-dab0-41db-e07c-4b3afbdd7932",
- "papermill": {
- "duration": 0.077834,
- "end_time": "2024-11-20T03:54:15.336380",
- "exception": false,
- "start_time": "2024-11-20T03:54:15.258546",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "if False:\n",
- " from unsloth import FastLanguageModel\n",
- " model, tokenizer = FastLanguageModel.from_pretrained(\n",
- " model_name = \"scoliono/groupchat_lora_abliterated_instruct-3.1-8b\", # YOUR MODEL YOU USED FOR TRAINING\n",
- " max_seq_length = max_seq_length,\n",
- " dtype = dtype,\n",
- " load_in_4bit = load_in_4bit,\n",
- " )\n",
- " FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
- "\n",
- " # alpaca_prompt = You MUST copy from above!\n",
- "\n",
- " inputs = tokenizer(\n",
- " [\n",
- " alpaca_prompt.format(\n",
- " \"What is a famous tall tower in Paris?\", # instruction\n",
- " \"\", # input\n",
- " \"\", # output - leave this blank for generation!\n",
- " )\n",
- " ], return_tensors = \"pt\").to(\"cuda\")\n",
- "\n",
- " outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
- " tokenizer.batch_decode(outputs)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0dbf42b6",
- "metadata": {
- "id": "QQMjaNrjsU5_",
- "papermill": {
- "duration": 0.070237,
- "end_time": "2024-11-20T03:54:15.514274",
- "exception": false,
- "start_time": "2024-11-20T03:54:15.444037",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "id": "ec3b9df7",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-20T03:54:15.656780Z",
- "iopub.status.busy": "2024-11-20T03:54:15.656173Z",
- "iopub.status.idle": "2024-11-20T03:54:15.660705Z",
- "shell.execute_reply": "2024-11-20T03:54:15.659857Z"
- },
- "id": "yFfaXG0WsQuE",
- "papermill": {
- "duration": 0.077345,
- "end_time": "2024-11-20T03:54:15.662229",
- "exception": false,
- "start_time": "2024-11-20T03:54:15.584884",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "if False:\n",
- " # I highly do NOT suggest - use Unsloth if possible\n",
- " from peft import AutoPeftModelForCausalLM\n",
- " from transformers import AutoTokenizer\n",
- " model = AutoPeftModelForCausalLM.from_pretrained(\n",
- " \"groupchat_lora_abliterated_instruct-3.1-8b\", # YOUR MODEL YOU USED FOR TRAINING\n",
- " load_in_4bit = load_in_4bit,\n",
- " )\n",
- " tokenizer = AutoTokenizer.from_pretrained(\"groupchat_lora_abliterated_instruct-3.1-8b\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b599046e",
- "metadata": {
- "id": "f422JgM9sdVT",
- "papermill": {
- "duration": 0.07051,
- "end_time": "2024-11-20T03:54:15.803541",
- "exception": false,
- "start_time": "2024-11-20T03:54:15.733031",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "### Saving to float16 for VLLM\n",
- "\n",
- "We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "id": "56eec57b",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-20T03:54:15.946500Z",
- "iopub.status.busy": "2024-11-20T03:54:15.945712Z",
- "iopub.status.idle": "2024-11-20T03:54:15.951204Z",
- "shell.execute_reply": "2024-11-20T03:54:15.950368Z"
- },
- "id": "iHjt_SMYsd3P",
- "papermill": {
- "duration": 0.079821,
- "end_time": "2024-11-20T03:54:15.952812",
- "exception": false,
- "start_time": "2024-11-20T03:54:15.872991",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "# Merge to 16bit\n",
- "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n",
- "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n",
- "\n",
- "# Merge to 4bit\n",
- "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\n",
- "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n",
- "\n",
- "# Just LoRA adapters\n",
- "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n",
- "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"lora\", token = \"\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d87b3974",
- "metadata": {
- "id": "TCv4vXHd61i7",
- "papermill": {
- "duration": 0.0692,
- "end_time": "2024-11-20T03:54:16.091909",
- "exception": false,
- "start_time": "2024-11-20T03:54:16.022709",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "### GGUF / llama.cpp Conversion\n",
- "To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n",
- "\n",
- "Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n",
- "* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n",
- "* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n",
- "* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "id": "ec62bb3e",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-11-20T03:54:16.232549Z",
- "iopub.status.busy": "2024-11-20T03:54:16.232264Z",
- "iopub.status.idle": "2024-11-20T03:54:16.237502Z",
- "shell.execute_reply": "2024-11-20T03:54:16.236662Z"
- },
- "id": "FqfebeAdT073",
- "papermill": {
- "duration": 0.07695,
- "end_time": "2024-11-20T03:54:16.239011",
- "exception": false,
- "start_time": "2024-11-20T03:54:16.162061",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "# Save to 8bit Q8_0\n",
- "if False: model.save_pretrained_gguf(\"model\", tokenizer,)\n",
- "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, token = \"\")\n",
- "\n",
- "# Save to 16bit GGUF\n",
- "if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"f16\")\n",
- "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"f16\", token = \"\")\n",
- "\n",
- "# Save to q4_k_m GGUF\n",
- "if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"q4_k_m\")\n",
- "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"q4_k_m\", token = \"\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "8bb60882",
- "metadata": {
- "id": "bDp0zNpwe6U_",
- "papermill": {
- "duration": 0.070344,
- "end_time": "2024-11-20T03:54:16.380192",
- "exception": false,
- "start_time": "2024-11-20T03:54:16.309848",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html)."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e36cffc3",
- "metadata": {
- "id": "Zt9CHJqO6p30",
- "papermill": {
- "duration": 0.070243,
- "end_time": "2024-11-20T03:54:16.520198",
- "exception": false,
- "start_time": "2024-11-20T03:54:16.449955",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n",
- "\n",
- "Some other links:\n",
- "1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)\n",
- "2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)\n",
- "3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n",
- "4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n",
- "5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)\n",
- "6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n",
- "7. `ChatML` for ShareGPT datasets, [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing)\n",
- "8. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)\n",
- "\n",
- "\n",
- " \n",
- " \n",
- " Support our work if you can! Thanks!\n",
- " "
- ]
- }
- ],
- "metadata": {
- "accelerator": "GPU",
- "colab": {
- "gpuType": "T4",
- "provenance": []
- },
- "kaggle": {
- "accelerator": "nvidiaTeslaT4",
- "dataSources": [
- {
- "datasetId": 5080560,
- "sourceId": 8511152,
- "sourceType": "datasetVersion"
- },
- {
- "datasetId": 4675483,
- "sourceId": 9945992,
- "sourceType": "datasetVersion"
- }
- ],
- "isGpuEnabled": true,
- "isInternetEnabled": true,
- "language": "python",
- "sourceType": "notebook"
- },
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.14"
- },
- "papermill": {
- "default_parameters": {},
- "duration": 31943.963858,
- "end_time": "2024-11-20T03:54:20.121228",
- "environment_variables": {},
- "exception": null,
- "input_path": "__notebook__.ipynb",
- "output_path": "__notebook__.ipynb",
- "parameters": {},
- "start_time": "2024-11-19T19:01:56.157370",
- "version": "2.6.0"
- },
- "widgets": {
- "application/vnd.jupyter.widget-state+json": {
- "state": {
- "00ff3e2ec80b49749129275d3755094d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "0134442b780a4caabbda750750db4c5c": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "01528ff85c6545a793740e7d1fd6563f": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "01d17c40e8bc4a10b4cf5961fc9f11ee": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "03aa426013f74db0b89b2f3086452b69": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "03b8fcb5ba0f42489df25730f8dd85ae": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "04b86f5ccbfe4734bfbcbec750a239a9": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "06ce7898e23948f1800c07f2818454b4": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "08f62cfbbf61433ab5c4bd66efbfe59a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "0a0263f083d04e65b964c7cc5c24ced6": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "0b04ac3c964240a19b4e1bd75cc8d771": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4fd24128dce54ea7b10bd8d41770ade4",
- "placeholder": "",
- "style": "IPY_MODEL_80abe7aa33df4d749a79932458f1c4b8",
- "value": "model-00004-of-00004.safetensors: 100%"
- }
- },
- "0b05cd87aeb141dd92f3756b79bf23e8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_706032828e9c4fddbf4ee09d61e69f4c",
- "IPY_MODEL_ff65bd41ef9b4c57a8fad8beb2d0fece",
- "IPY_MODEL_ea6b8453202e4d5d849ce1b285d9b1d8"
- ],
- "layout": "IPY_MODEL_9f4d1620bd68473ba9c7282314bdcb8f"
- }
- },
- "0f0c38ccb6c0402f84a66639ce3b0a2c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_1ba14b103a194fd999941e492435a626",
- "IPY_MODEL_b9ecdfa0eb6c4b7d833b6e7b342eea30",
- "IPY_MODEL_58c5a26adb914ba19fd97dd5eb131e5b"
- ],
- "layout": "IPY_MODEL_9c741101066d4abbaf136c65dc8ecaae"
- }
- },
- "0f3642fa40b14933bb805a0197e180f6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "11e911c37ebb44f18552c54b2302a8a5": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "13b300df5d9343298b4c406ad9ae30e3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0a0263f083d04e65b964c7cc5c24ced6",
- "placeholder": "",
- "style": "IPY_MODEL_4e835140004048c9ab594123c8a9dd98",
- "value": " 9.09M/9.09M [00:00<00:00, 51.0MB/s]"
- }
- },
- "1ac4597357dd4ba888e5a84ac232d715": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d9a20e2f4a5d4a16a277030feb2f3c44",
- "max": 335604696.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_b66975b5a21e49f7b28f4bec58af9788",
- "value": 335604696.0
- }
- },
- "1ba14b103a194fd999941e492435a626": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1ebbe98829084fcabcfda7268d8a46e4",
- "placeholder": "",
- "style": "IPY_MODEL_b7ef5c86e91a49248ad3cac54e4ee13b",
- "value": "Map (num_proc=2): 100%"
- }
- },
- "1ebbe98829084fcabcfda7268d8a46e4": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "204ec9e416f04f5ea1e69734a10b6a58": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_38b5a243a34548c9867ad9ddfc6bf671",
- "placeholder": "",
- "style": "IPY_MODEL_6ba11508c5ee41acb7c12d878421e2b3",
- "value": "model-00002-of-00004.safetensors: 100%"
- }
- },
- "208d530d5bc9489c84b120adee331875": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_41176e7ab212446cb64d06a28fecd117",
- "IPY_MODEL_1ac4597357dd4ba888e5a84ac232d715",
- "IPY_MODEL_43b348b7f882486b9682cc6834bbd572"
- ],
- "layout": "IPY_MODEL_8ea0c01d612f4ad8850fe575cad52ace"
- }
- },
- "20ebd44d861249a9bbba6b4d7cf7a1af": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_43e3d4fc67fa45c7be05ab954af81f76",
- "IPY_MODEL_b54a067abd784c77b77cb2c7ebc593e7",
- "IPY_MODEL_74204a7f84b449799adf14a31026c540"
- ],
- "layout": "IPY_MODEL_06ce7898e23948f1800c07f2818454b4"
- }
- },
- "237154eeabe24933bc753d51f761a914": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "23b1086b33c54a9d8f3d9c7e456cb742": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_fe4ec6069f574464bd413484829c642f",
- "placeholder": "",
- "style": "IPY_MODEL_7d4a2655de8d4ec4bdb8eb144224cb6d",
- "value": " 1/1 [00:01<00:00, 1.27s/it]"
- }
- },
- "251e58517c744e68af550956e6b45462": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_9f3445658b28494bbf6a6fd273fa04b9",
- "placeholder": "",
- "style": "IPY_MODEL_31d6afe0c04e43ca842b8199cfd2f244",
- "value": "generation_config.json: 100%"
- }
- },
- "257457ccd59a4a969cf3e09d76175f13": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "28cb312d668a4f64b529abe8348787b7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_01d17c40e8bc4a10b4cf5961fc9f11ee",
- "placeholder": "",
- "style": "IPY_MODEL_585c01f35a56437aaba152286ae7c2d1",
- "value": " 5.00G/5.00G [00:14<00:00, 1.42GB/s]"
- }
- },
- "28e8f58ec5314f22a4cf486efdca509f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_cf0196207fa8497d9ed7914f46718143",
- "placeholder": "",
- "style": "IPY_MODEL_03aa426013f74db0b89b2f3086452b69",
- "value": "model.safetensors.index.json: 100%"
- }
- },
- "2966a5340cf64f239f8ad5e66ff141fd": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "296923c95b684c1b838d7c110cdcfc29": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "29a42faa47cc4eaf85fb314d282545c8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "2bc24951f1ee436e89f0e5ce1d6e7d72": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "2bd6697dfb12497685a0f188bd34c966": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_402c34608bda498592a08287025e48cf",
- "max": 9085657.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_97b136b53507455c9691ad48e2c08cb2",
- "value": 9085657.0
- }
- },
- "2e594a35d674437f95ac9a62c285fe50": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_414446d8ef8343c0864939243960b4a0",
- "placeholder": "",
- "style": "IPY_MODEL_5ba153943c9a4bf6b833f0c59604ae2a",
- "value": " 4/4 [00:49<00:00, 11.51s/it]"
- }
- },
- "31d6afe0c04e43ca842b8199cfd2f244": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "349eac0e8e4743678a4de3a306c834f7": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "34bedcce0713438ba7e36bfc93da6105": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "3801ae82b88b48f79e38b361805ac896": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "38b5a243a34548c9867ad9ddfc6bf671": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "391107bc28b9409eb84d43b5f4781870": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "391d5e4813464708a198d3997ebd0b6f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "3b4f7dbbcd5e48259d60ab2c6d0702b5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "3d6d9cd6dccd40a698298e4f020e3767": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "3e15bf5264b24513b60a3f4ec5baaf6e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ce129e40c5354ecaab77ec7612fad823",
- "placeholder": "",
- "style": "IPY_MODEL_0f3642fa40b14933bb805a0197e180f6",
- "value": " 1.17G/1.17G [00:04<00:00, 1.01GB/s]"
- }
- },
- "402c34608bda498592a08287025e48cf": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "41176e7ab212446cb64d06a28fecd117": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_11e911c37ebb44f18552c54b2302a8a5",
- "placeholder": "",
- "style": "IPY_MODEL_83a40cc93bb44780a3d504dd2407edfb",
- "value": "adapter_model.safetensors: "
- }
- },
- "414446d8ef8343c0864939243960b4a0": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "41b917013b9d4ea19487386a6554105d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e728d751ecdb49639a90b37915dbdc13",
- "max": 296.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_391107bc28b9409eb84d43b5f4781870",
- "value": 296.0
- }
- },
- "43b348b7f882486b9682cc6834bbd572": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_712d5c8f398543db8a84f434dd563ab1",
- "placeholder": "",
- "style": "IPY_MODEL_03b8fcb5ba0f42489df25730f8dd85ae",
- "value": " 336M/? [00:01<00:00, 306MB/s]"
- }
- },
- "43d0ec6d09814333a2fd4e98aad562e3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "43e3d4fc67fa45c7be05ab954af81f76": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e1a1c52c6370427088bff614db75eed4",
- "placeholder": "",
- "style": "IPY_MODEL_43d0ec6d09814333a2fd4e98aad562e3",
- "value": "README.md: 100%"
- }
- },
- "46a43d24f165406b8d49e4f8b438a73d": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "4a61849253464538acb5b330bcc02a78": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3801ae82b88b48f79e38b361805ac896",
- "placeholder": "",
- "style": "IPY_MODEL_a4109e1f0ecd48d3a7b6925f11e803f5",
- "value": "model-00001-of-00004.safetensors: 100%"
- }
- },
- "4dcc5c6a67284b97886c7f8ca1ea97b0": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "4e835140004048c9ab594123c8a9dd98": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "4fd24128dce54ea7b10bd8d41770ade4": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "4ff1ddecfd354ce2883404092e2b3cd8": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "500823316e424c97b1435b3b04e7858d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "52307514a7d14c388004fc8ae3e7378e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_28e8f58ec5314f22a4cf486efdca509f",
- "IPY_MODEL_70d30a207d744d1b8fd9eec0192a2f33",
- "IPY_MODEL_98ba55ef3cee4b769732f3ef8116f635"
- ],
- "layout": "IPY_MODEL_a2cc2a760b1a433cac901e37a38de985"
- }
- },
- "5412bb916c244149a7232f7cf8934dce": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_251e58517c744e68af550956e6b45462",
- "IPY_MODEL_f66b748e6cff43cb9f5f81bd4d9ead42",
- "IPY_MODEL_eda63eaaaf4145b49e2a91ef9c3752d9"
- ],
- "layout": "IPY_MODEL_5b84f342fb654e6a8725c6948b30218b"
- }
- },
- "5545906c3c67475b932a349ecd4e3930": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "5699440a265c4a44a6f21a6551c0a49e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a2ee9853a3894890a49310c2317cfc4f",
- "IPY_MODEL_e46410353b014526ac5cfc37eabbdf0a",
- "IPY_MODEL_23b1086b33c54a9d8f3d9c7e456cb742"
- ],
- "layout": "IPY_MODEL_60fb8e261c7f4eb6a9851f4e2aece968"
- }
- },
- "56b8afd7f92649d2941b5204e34e4e32": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "585c01f35a56437aaba152286ae7c2d1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "58c5a26adb914ba19fd97dd5eb131e5b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f8e704086f8a436dbb76b8563b9c048b",
- "placeholder": "",
- "style": "IPY_MODEL_7575808f3ae64c6b86912af237fc3821",
- "value": " 17983/17983 [00:16<00:00, 690.68 examples/s]"
- }
- },
- "5b7bb000605f4aa39ee611a5615696d6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a9ffb23c10e74ce79d7f91c69abec07c",
- "max": 50870.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_ad0b82753488425caa4a725223f4e2ee",
- "value": 50870.0
- }
- },
- "5b84f342fb654e6a8725c6948b30218b": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "5ba153943c9a4bf6b833f0c59604ae2a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "60fb8e261c7f4eb6a9851f4e2aece968": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "62bb7c9837924e39aeb77a90e681e78b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "62ef598cedfb4089aad9e132353de5e3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "641db91fa3cf45a1aaf71035c02ecd7d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "66fdde56e1d54f6f93a3242b6c9ae5d2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_257457ccd59a4a969cf3e09d76175f13",
- "placeholder": "",
- "style": "IPY_MODEL_00ff3e2ec80b49749129275d3755094d",
- "value": "tokenizer.json: 100%"
- }
- },
- "679dfe3d327a41b2b518d55652625780": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_0b04ac3c964240a19b4e1bd75cc8d771",
- "IPY_MODEL_8508c8c0637d4ef78e365a09eb9226ae",
- "IPY_MODEL_3e15bf5264b24513b60a3f4ec5baaf6e"
- ],
- "layout": "IPY_MODEL_f4b7d3783d864e93a944310b5a671505"
- }
- },
- "67b08695265140fc95fddf19c2009b22": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0134442b780a4caabbda750750db4c5c",
- "placeholder": "",
- "style": "IPY_MODEL_ce7a15d0ba53434cb2180d2b5d528cb2",
- "value": "model-00003-of-00004.safetensors: 100%"
- }
- },
- "6ba11508c5ee41acb7c12d878421e2b3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "6d34a8cb6dd44a51a5ede4509989bb91": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_204ec9e416f04f5ea1e69734a10b6a58",
- "IPY_MODEL_9919444f00bf4e4381014c941747746d",
- "IPY_MODEL_28cb312d668a4f64b529abe8348787b7"
- ],
- "layout": "IPY_MODEL_804a955f5f1a45a2bd038e583f8d043c"
- }
- },
- "706032828e9c4fddbf4ee09d61e69f4c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_fd68c5beec474d72999b3793400c1691",
- "placeholder": "",
- "style": "IPY_MODEL_a18df9f34cb64707b4c99a17bb4bc541",
- "value": "Loading checkpoint shards: 100%"
- }
- },
- "70d30a207d744d1b8fd9eec0192a2f33": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e74fe26f29da44a1a2f01798daf3ea36",
- "max": 23950.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_62ef598cedfb4089aad9e132353de5e3",
- "value": 23950.0
- }
- },
- "712d5c8f398543db8a84f434dd563ab1": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "71a57cb4190e49959602e8f8b9d2f0c7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_34bedcce0713438ba7e36bfc93da6105",
- "placeholder": "",
- "style": "IPY_MODEL_d800c47c55ea4fe998168e58edf81b23",
- "value": " 296/296 [00:00<00:00, 29.3kB/s]"
- }
- },
- "74204a7f84b449799adf14a31026c540": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c218fc4173444fd3967938e3e70fe474",
- "placeholder": "",
- "style": "IPY_MODEL_753f2053eb274dc8aaa9fa6e6c8fb409",
- "value": " 615/615 [00:00<00:00, 62.6kB/s]"
- }
- },
- "753f2053eb274dc8aaa9fa6e6c8fb409": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "7575808f3ae64c6b86912af237fc3821": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "79dda4be7dcf4de1b97c947896fd092a": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "7a88ef32cf2c4bd7ba33ac8935d51c01": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "7d2e7ebb63764349a88c624c179ad00f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "7d4a2655de8d4ec4bdb8eb144224cb6d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "804a955f5f1a45a2bd038e583f8d043c": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "80a88015f8374bbd930529c4b9722389": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_4a61849253464538acb5b330bcc02a78",
- "IPY_MODEL_e803e332345d4d1f8002e2177ee32783",
- "IPY_MODEL_d277cbb743bc40e38c0da1fdf842fb23"
- ],
- "layout": "IPY_MODEL_79dda4be7dcf4de1b97c947896fd092a"
- }
- },
- "80abe7aa33df4d749a79932458f1c4b8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "826806e357184edab64657d795217dff": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "83a40cc93bb44780a3d504dd2407edfb": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "8508c8c0637d4ef78e365a09eb9226ae": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "danger",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3d6d9cd6dccd40a698298e4f020e3767",
- "max": 1168138808.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_b3ac3fb8e1734a5fb2bf00c49e070fe0",
- "value": 1168138697.0
- }
- },
- "8b705a2942ad4611a4498d23ed757c2e": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "8b9186a0443742c2ba93ae286db9885e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_66fdde56e1d54f6f93a3242b6c9ae5d2",
- "IPY_MODEL_2bd6697dfb12497685a0f188bd34c966",
- "IPY_MODEL_13b300df5d9343298b4c406ad9ae30e3"
- ],
- "layout": "IPY_MODEL_d2b864bc2cae4fa1886c63071f896a41"
- }
- },
- "8c1dd09690454a24be77ff17a4f890f8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5545906c3c67475b932a349ecd4e3930",
- "placeholder": "",
- "style": "IPY_MODEL_500823316e424c97b1435b3b04e7858d",
- "value": " 4.92G/4.92G [00:19<00:00, 1.17GB/s]"
- }
- },
- "8c9c9e37be24486a8c363616014ca76b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "8ea0c01d612f4ad8850fe575cad52ace": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "906d6cfcf9494a339fc351615a0da98a": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "95489b0d38d14b36b6886031361093b2": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "96b1331bfa4f46ce84256afbe4ee8364": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "97b136b53507455c9691ad48e2c08cb2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "97c2f928e86f4374baa0f502ca5707e3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e6ac85a2e3334faabe8392a74fdd3526",
- "IPY_MODEL_f6cbba5454c54d38bdfce2f9982ac90c",
- "IPY_MODEL_2e594a35d674437f95ac9a62c285fe50"
- ],
- "layout": "IPY_MODEL_b19eba08a6d14a10ae0e85467aebf7af"
- }
- },
- "98ba55ef3cee4b769732f3ef8116f635": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_95489b0d38d14b36b6886031361093b2",
- "placeholder": "",
- "style": "IPY_MODEL_29a42faa47cc4eaf85fb314d282545c8",
- "value": " 23.9k/23.9k [00:00<00:00, 1.99MB/s]"
- }
- },
- "9919444f00bf4e4381014c941747746d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "danger",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f122df255ff54a37a90f21a47d484bf4",
- "max": 4999802720.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_8c9c9e37be24486a8c363616014ca76b",
- "value": 4999802244.0
- }
- },
- "993fe5d6589f4580b7a41d7e03ac1a29": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "9c741101066d4abbaf136c65dc8ecaae": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "9f3445658b28494bbf6a6fd273fa04b9": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "9f4d1620bd68473ba9c7282314bdcb8f": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "a18df9f34cb64707b4c99a17bb4bc541": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "a2cc2a760b1a433cac901e37a38de985": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "a2ee9853a3894890a49310c2317cfc4f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e4fce321a2d44aa3bfe49c80e9add9ce",
- "placeholder": "",
- "style": "IPY_MODEL_08f62cfbbf61433ab5c4bd66efbfe59a",
- "value": "100%"
- }
- },
- "a4109e1f0ecd48d3a7b6925f11e803f5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "a81d251b9e494da1b759157f695e8d47": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f7739741f2a140408406d9ff0a7fee73",
- "IPY_MODEL_41b917013b9d4ea19487386a6554105d",
- "IPY_MODEL_71a57cb4190e49959602e8f8b9d2f0c7"
- ],
- "layout": "IPY_MODEL_04b86f5ccbfe4734bfbcbec750a239a9"
- }
- },
- "a943f30d502049bdbb22ade8e7575d2b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "a953aa1afe6147e4896888080c1373ba": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_67b08695265140fc95fddf19c2009b22",
- "IPY_MODEL_f436945cefb744b695370c1a78554b32",
- "IPY_MODEL_8c1dd09690454a24be77ff17a4f890f8"
- ],
- "layout": "IPY_MODEL_c74530bb79684bdc974a782ee144a5d9"
- }
- },
- "a9ffb23c10e74ce79d7f91c69abec07c": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ad0b82753488425caa4a725223f4e2ee": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "aec23e2e49644c07b06eb3871b33e4e4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_01528ff85c6545a793740e7d1fd6563f",
- "placeholder": "",
- "style": "IPY_MODEL_7d2e7ebb63764349a88c624c179ad00f",
- "value": " 50.9k/50.9k [00:00<00:00, 2.85MB/s]"
- }
- },
- "b19eba08a6d14a10ae0e85467aebf7af": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "b3ac3fb8e1734a5fb2bf00c49e070fe0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "b54a067abd784c77b77cb2c7ebc593e7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e784f5efcc9e4bd796572a4fccc9c58f",
- "max": 615.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_62bb7c9837924e39aeb77a90e681e78b",
- "value": 615.0
- }
- },
- "b62517a38dbd42d6bbde1b8dfbb729e8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "b66975b5a21e49f7b28f4bec58af9788": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "b7ef5c86e91a49248ad3cac54e4ee13b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "b9ecdfa0eb6c4b7d833b6e7b342eea30": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_993fe5d6589f4580b7a41d7e03ac1a29",
- "max": 17983.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_826806e357184edab64657d795217dff",
- "value": 17983.0
- }
- },
- "beffc7b653144b19a9d8cba66f98da1f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_237154eeabe24933bc753d51f761a914",
- "placeholder": "",
- "style": "IPY_MODEL_641db91fa3cf45a1aaf71035c02ecd7d",
- "value": "tokenizer_config.json: 100%"
- }
- },
- "c218fc4173444fd3967938e3e70fe474": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "c4a63f25aac04204b64b853bb04156e9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "c6b88a3c4c2147648f46a9c1a81e302a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "c74530bb79684bdc974a782ee144a5d9": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "cbfb8fbcd57044d2a860c635e3863749": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ce129e40c5354ecaab77ec7612fad823": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ce7a15d0ba53434cb2180d2b5d528cb2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "cf0196207fa8497d9ed7914f46718143": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "d277cbb743bc40e38c0da1fdf842fb23": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_906d6cfcf9494a339fc351615a0da98a",
- "placeholder": "",
- "style": "IPY_MODEL_2966a5340cf64f239f8ad5e66ff141fd",
- "value": " 4.98G/4.98G [00:09<00:00, 1.31GB/s]"
- }
- },
- "d2b864bc2cae4fa1886c63071f896a41": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "d800c47c55ea4fe998168e58edf81b23": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "d9a20e2f4a5d4a16a277030feb2f3c44": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "dcbe23174d7540c5809a5ea02daba4d2": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e098d9b8d2124e30bd94fbc6e9161ad2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_beffc7b653144b19a9d8cba66f98da1f",
- "IPY_MODEL_5b7bb000605f4aa39ee611a5615696d6",
- "IPY_MODEL_aec23e2e49644c07b06eb3871b33e4e4"
- ],
- "layout": "IPY_MODEL_4ff1ddecfd354ce2883404092e2b3cd8"
- }
- },
- "e1a1c52c6370427088bff614db75eed4": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e46410353b014526ac5cfc37eabbdf0a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_46a43d24f165406b8d49e4f8b438a73d",
- "max": 1.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_b62517a38dbd42d6bbde1b8dfbb729e8",
- "value": 1.0
- }
- },
- "e489d6700f104d29a790349d55f30e74": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e4fce321a2d44aa3bfe49c80e9add9ce": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e6ac85a2e3334faabe8392a74fdd3526": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_8b705a2942ad4611a4498d23ed757c2e",
- "placeholder": "",
- "style": "IPY_MODEL_c4a63f25aac04204b64b853bb04156e9",
- "value": "Downloading shards: 100%"
- }
- },
- "e728d751ecdb49639a90b37915dbdc13": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e74fe26f29da44a1a2f01798daf3ea36": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e784f5efcc9e4bd796572a4fccc9c58f": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e803e332345d4d1f8002e2177ee32783": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "danger",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f0a8673330e5441785a83f51b993c4f5",
- "max": 4976698672.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_391d5e4813464708a198d3997ebd0b6f",
- "value": 4976698198.0
- }
- },
- "ea6b8453202e4d5d849ce1b285d9b1d8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_7a88ef32cf2c4bd7ba33ac8935d51c01",
- "placeholder": "",
- "style": "IPY_MODEL_a943f30d502049bdbb22ade8e7575d2b",
- "value": " 4/4 [00:50<00:00, 9.61s/it]"
- }
- },
- "eda63eaaaf4145b49e2a91ef9c3752d9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_296923c95b684c1b838d7c110cdcfc29",
- "placeholder": "",
- "style": "IPY_MODEL_3b4f7dbbcd5e48259d60ab2c6d0702b5",
- "value": " 194/194 [00:00<00:00, 19.0kB/s]"
- }
- },
- "f0a8673330e5441785a83f51b993c4f5": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "f122df255ff54a37a90f21a47d484bf4": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "f228b353be1b4e59a22b7a123e8b7980": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "f436945cefb744b695370c1a78554b32": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "danger",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_349eac0e8e4743678a4de3a306c834f7",
- "max": 4915916176.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c6b88a3c4c2147648f46a9c1a81e302a",
- "value": 4915915708.0
- }
- },
- "f4b7d3783d864e93a944310b5a671505": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "f66b748e6cff43cb9f5f81bd4d9ead42": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e489d6700f104d29a790349d55f30e74",
- "max": 194.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_56b8afd7f92649d2941b5204e34e4e32",
- "value": 194.0
- }
- },
- "f6cbba5454c54d38bdfce2f9982ac90c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4dcc5c6a67284b97886c7f8ca1ea97b0",
- "max": 4.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_96b1331bfa4f46ce84256afbe4ee8364",
- "value": 4.0
- }
- },
- "f7739741f2a140408406d9ff0a7fee73": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_dcbe23174d7540c5809a5ea02daba4d2",
- "placeholder": "",
- "style": "IPY_MODEL_f228b353be1b4e59a22b7a123e8b7980",
- "value": "special_tokens_map.json: 100%"
- }
- },
- "f8e704086f8a436dbb76b8563b9c048b": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "fd68c5beec474d72999b3793400c1691": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "fe4ec6069f574464bd413484829c642f": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ff65bd41ef9b4c57a8fad8beb2d0fece": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_cbfb8fbcd57044d2a860c635e3863749",
- "max": 4.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_2bc24951f1ee436e89f0e5ce1d6e7d72",
- "value": 4.0
- }
- }
- },
- "version_major": 2,
- "version_minor": 0
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
|