diff --git a/data/procToxicQA.js b/data/procToxicQA.js
new file mode 100644
index 0000000..7ecc75e
--- /dev/null
+++ b/data/procToxicQA.js
@@ -0,0 +1,22 @@
+const fs = require('node:fs');
+var lineReader = require('readline').createInterface({
+ input: fs.createReadStream('toxicQA.json')
+});
+var outstream = fs.createWriteStream('toxicQAfinal.json');
+fs.unlinkSync('toxicQAfinal.json');
+
+lineReader.on('line', function (line) {
+ const dialogue = JSON.parse(line)["conversations"];
+ const newdialogue = [];
+ for (const dialogueLine of dialogue) {
+ newdialogue.push({
+ role: dialogueLine["from"] === "human" ? "user" : "assistant",
+ content: dialogueLine["value"]
+ });
+ }
+ outstream.write(JSON.stringify(newdialogue) + '\n');
+});
+
+lineReader.on('close', function () {
+ console.log('all done, son');
+});
diff --git a/data/process.js b/data/process.js
index 1fa36b8..4461d5d 100644
--- a/data/process.js
+++ b/data/process.js
@@ -1,7 +1,24 @@
const fs = require('node:fs');
const JSONStream = require('JSONStream');
-const MIKU_FREQ = 5; // 1/5 = 20% of message chains are randomly chosen to be from Miku
+const MIKU_FREQ = 5; // 1/5 = 20% of message chains are randomly chosen to be from Miku
+const DROPOUT_UNFUNNY = 0.75; // 75% dropout rate for messages chains which have NO reactions
+const USERNAMES = [
+ 'vinny volcano\uD83C\uDF0B (伊胜焱)',
+ 'Server Comp!',
+ 'Make The Map \uD83D\uDDFA',
+ '1981 Celical Man\uD83C\uDF41\uD83C\uDF42',
+ 'Hatsune Miku',
+ 'Cutie Kazerounian\uD83C\uDF41\uD83C\uDF42',
+ 'David Pan (Fembooru)\uD83C\uDF41\uD83C\uDF42',
+ 'Exiled Sammy \uD83D\uDD12\uD83C\uDFDD⏱',
+ 'shibe.mp4❄☃',
+ 'Today Man-San(1990)\uD83C\uDF41\uD83C\uDF42',
+ 'owner',
+ 'cj7 by stephen chow (gmod PC)\uD83C\uDF41\uD83C\uDF42',
+ 'Nicolaid',
+ 'epbic',
+];
async function main() {
let counter = 0;
@@ -14,6 +31,7 @@ async function main() {
let lastMsgTime;
let botAuthoredMsgSequence;
let convoMsgSeqCount = 0;
+ let convoReactCount = 0;
let convoMsgs = [];
stream.on('data', async (msg) => {
@@ -35,11 +53,18 @@ async function main() {
*/
// scrub links
- const cleanContent = msg.content.replaceAll(/https?:\/\/\S+/gi, '');
+ let cleanContent = msg.content.replaceAll(/https?:\/\/\S+/gi, '');
+ // scrub @mentions
+ for (const username of USERNAMES) {
+ cleanContent = cleanContent.replaceAll(`@${username}`, "");
+ }
if (!cleanContent) {
return;
}
+ // count reaction
+ convoReactCount += msg.reactions.length;
+
// determine continuity of message sequences
let msgTime = new Date(msg.timestamp);
if (lastMsgAuthor !== msg.author.id || (msgTime - lastMsgTime)/60000 >= 7) {
@@ -54,15 +79,19 @@ async function main() {
// 10 msg sequences per "conversation"
if (convoMsgSeqCount === 10) {
- // write JSONL format
- fs.appendFileSync('output.json', JSON.stringify(convoMsgs) + '\n');
- convoMsgSeqCount = 0;
+ // dropout
+ const convoKeep = convoReactCount > 0 || Math.random() >= DROPOUT_UNFUNNY;
+ if (convoKeep) {
+ // write JSONL format
+ fs.appendFileSync('output.json', JSON.stringify(convoMsgs) + '\n');
+ }
+ convoMsgSeqCount = convoReactCount = 0;
convoMsgs = [];
}
// follow chatML chat template
const outMsg = {
- role: botAuthoredMsgSequence ? "assistant" : "user",
+ role: botAuthoredMsgSequence ? "assistant" : msg.author.name,
content: cleanContent
};
convoMsgs.push(outMsg);
diff --git a/train_unsloth.ipynb b/train_unsloth.ipynb
index 9d62008..ddcffeb 100644
--- a/train_unsloth.ipynb
+++ b/train_unsloth.ipynb
@@ -1,10069 +1 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "id": "f9f8a4ee",
- "metadata": {
- "id": "IqM-T1RTzY6C",
- "papermill": {
- "duration": 0.038159,
- "end_time": "2024-03-28T00:08:52.505173",
- "exception": false,
- "start_time": "2024-03-28T00:08:52.467014",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n",
- "
\n",
- "
\n",
- "
\n",
- "
Join Discord if you need help + support us if you can!\n",
- "
\n",
- "\n",
- "To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth#installation-instructions---conda).\n",
- "\n",
- "You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp).\n",
- "\n",
- "This notebook uses the `ChatML` format for conversation style finetunes. We use [Open Assistant conversations](https://huggingface.co/datasets/philschmid/guanaco-sharegpt-style) in ShareGPT style."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "4c970fa0",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T00:08:52.578683Z",
- "iopub.status.busy": "2024-03-28T00:08:52.577956Z",
- "iopub.status.idle": "2024-03-28T00:12:44.149130Z",
- "shell.execute_reply": "2024-03-28T00:12:44.147764Z"
- },
- "id": "2eSvM9zX_2d3",
- "papermill": {
- "duration": 231.609576,
- "end_time": "2024-03-28T00:12:44.151750",
- "exception": false,
- "start_time": "2024-03-28T00:08:52.542174",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://download.pytorch.org/whl/cu121\r\n",
- "Collecting xformers\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/xformers-0.0.25-cp310-cp310-manylinux2014_x86_64.whl (222.5 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m222.5/222.5 MB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hRequirement already satisfied: numpy in /opt/conda/lib/python3.10/site-packages (from xformers) (1.26.4)\r\n",
- "Collecting torch==2.2.1 (from xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/torch-2.2.1%2Bcu121-cp310-cp310-linux_x86_64.whl (757.3 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m757.3/757.3 MB\u001b[0m \u001b[31m2.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hRequirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from torch==2.2.1->xformers) (3.13.1)\r\n",
- "Requirement already satisfied: typing-extensions>=4.8.0 in /opt/conda/lib/python3.10/site-packages (from torch==2.2.1->xformers) (4.9.0)\r\n",
- "Requirement already satisfied: sympy in /opt/conda/lib/python3.10/site-packages (from torch==2.2.1->xformers) (1.12)\r\n",
- "Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch==2.2.1->xformers) (3.2.1)\r\n",
- "Requirement already satisfied: jinja2 in /opt/conda/lib/python3.10/site-packages (from torch==2.2.1->xformers) (3.1.2)\r\n",
- "Requirement already satisfied: fsspec in /opt/conda/lib/python3.10/site-packages (from torch==2.2.1->xformers) (2024.3.0)\r\n",
- "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m23.7/23.7 MB\u001b[0m \u001b[31m26.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105 (from torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m823.6/823.6 kB\u001b[0m \u001b[31m40.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105 (from torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.1/14.1 MB\u001b[0m \u001b[31m84.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cudnn-cu12==8.9.2.26 (from torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m731.7/731.7 MB\u001b[0m \u001b[31m2.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cublas-cu12==12.1.3.1 (from torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m410.6/410.6 MB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cufft-cu12==11.0.2.54 (from torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m121.6/121.6 MB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-curand-cu12==10.3.2.106 (from torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 MB\u001b[0m \u001b[31m28.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cusolver-cu12==11.4.5.107 (from torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.2/124.2 MB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-cusparse-cu12==12.1.0.106 (from torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m196.0/196.0 MB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-nccl-cu12==2.19.3 (from torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl (166.0 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m166.0/166.0 MB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-nvtx-cu12==12.1.105 (from torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m99.1/99.1 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting triton==2.2.0 (from torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/triton-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.9 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m167.9/167.9 MB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hCollecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch==2.2.1->xformers)\r\n",
- " Downloading https://download.pytorch.org/whl/cu121/nvidia_nvjitlink_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (19.8 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.8/19.8 MB\u001b[0m \u001b[31m46.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hRequirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2->torch==2.2.1->xformers) (2.1.3)\r\n",
- "Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.10/site-packages (from sympy->torch==2.2.1->xformers) (1.3.0)\r\n",
- "Installing collected packages: triton, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, torch, xformers\r\n",
- " Attempting uninstall: torch\r\n",
- " Found existing installation: torch 2.1.2\r\n",
- " Uninstalling torch-2.1.2:\r\n",
- " Successfully uninstalled torch-2.1.2\r\n",
- "Successfully installed nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.19.3 nvidia-nvjitlink-cu12-12.1.105 nvidia-nvtx-cu12-12.1.105 torch-2.2.1+cu121 triton-2.2.0 xformers-0.0.25\r\n",
- "Collecting unsloth@ git+https://github.com/unslothai/unsloth.git (from unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git)\r\n",
- " Cloning https://github.com/unslothai/unsloth.git to /tmp/pip-install-yfpl0t85/unsloth_63990d9a4b8e4d6ca74bbfccdc6198cb\r\n",
- " Running command git clone --filter=blob:none --quiet https://github.com/unslothai/unsloth.git /tmp/pip-install-yfpl0t85/unsloth_63990d9a4b8e4d6ca74bbfccdc6198cb\r\n",
- " Resolved https://github.com/unslothai/unsloth.git to commit a68aebc1fa17755ffbcdafc9239e7ca37ab21657\r\n",
- " Installing build dependencies ... \u001b[?25l-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \bdone\r\n",
- "\u001b[?25h Getting requirements to build wheel ... \u001b[?25l-\b \b\\\b \bdone\r\n",
- "\u001b[?25h Installing backend dependencies ... \u001b[?25l-\b \b\\\b \b|\b \b/\b \bdone\r\n",
- "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25l-\b \b\\\b \bdone\r\n",
- "\u001b[?25hRequirement already satisfied: triton in /opt/conda/lib/python3.10/site-packages (2.2.0)\r\n",
- "Collecting datasets==2.17.1\r\n",
- " Downloading datasets-2.17.1-py3-none-any.whl.metadata (20 kB)\r\n",
- "Requirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from datasets==2.17.1) (3.13.1)\r\n",
- "Requirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.10/site-packages (from datasets==2.17.1) (1.26.4)\r\n",
- "Collecting pyarrow>=12.0.0 (from datasets==2.17.1)\r\n",
- " Downloading pyarrow-15.0.2-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (3.0 kB)\r\n",
- "Collecting pyarrow-hotfix (from datasets==2.17.1)\r\n",
- " Downloading pyarrow_hotfix-0.6-py3-none-any.whl.metadata (3.6 kB)\r\n",
- "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /opt/conda/lib/python3.10/site-packages (from datasets==2.17.1) (0.3.8)\r\n",
- "Requirement already satisfied: pandas in /opt/conda/lib/python3.10/site-packages (from datasets==2.17.1) (2.1.4)\r\n",
- "Requirement already satisfied: requests>=2.19.0 in /opt/conda/lib/python3.10/site-packages (from datasets==2.17.1) (2.31.0)\r\n",
- "Requirement already satisfied: tqdm>=4.62.1 in /opt/conda/lib/python3.10/site-packages (from datasets==2.17.1) (4.66.1)\r\n",
- "Requirement already satisfied: xxhash in /opt/conda/lib/python3.10/site-packages (from datasets==2.17.1) (3.4.1)\r\n",
- "Requirement already satisfied: multiprocess in /opt/conda/lib/python3.10/site-packages (from datasets==2.17.1) (0.70.16)\r\n",
- "Collecting fsspec<=2023.10.0,>=2023.1.0 (from fsspec[http]<=2023.10.0,>=2023.1.0->datasets==2.17.1)\r\n",
- " Downloading fsspec-2023.10.0-py3-none-any.whl.metadata (6.8 kB)\r\n",
- "Requirement already satisfied: aiohttp in /opt/conda/lib/python3.10/site-packages (from datasets==2.17.1) (3.9.1)\r\n",
- "Requirement already satisfied: huggingface-hub>=0.19.4 in /opt/conda/lib/python3.10/site-packages (from datasets==2.17.1) (0.21.4)\r\n",
- "Requirement already satisfied: packaging in /opt/conda/lib/python3.10/site-packages (from datasets==2.17.1) (21.3)\r\n",
- "Requirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.10/site-packages (from datasets==2.17.1) (6.0.1)\r\n",
- "Collecting bitsandbytes (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git)\r\n",
- " Downloading bitsandbytes-0.43.0-py3-none-manylinux_2_24_x86_64.whl.metadata (1.8 kB)\r\n",
- "Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets==2.17.1) (23.2.0)\r\n",
- "Requirement already satisfied: multidict<7.0,>=4.5 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets==2.17.1) (6.0.4)\r\n",
- "Requirement already satisfied: yarl<2.0,>=1.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets==2.17.1) (1.9.3)\r\n",
- "Requirement already satisfied: frozenlist>=1.1.1 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets==2.17.1) (1.4.1)\r\n",
- "Requirement already satisfied: aiosignal>=1.1.2 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets==2.17.1) (1.3.1)\r\n",
- "Requirement already satisfied: async-timeout<5.0,>=4.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets==2.17.1) (4.0.3)\r\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.19.4->datasets==2.17.1) (4.9.0)\r\n",
- "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.10/site-packages (from packaging->datasets==2.17.1) (3.1.1)\r\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->datasets==2.17.1) (3.3.2)\r\n",
- "Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->datasets==2.17.1) (3.6)\r\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->datasets==2.17.1) (1.26.18)\r\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->datasets==2.17.1) (2024.2.2)\r\n",
- "Requirement already satisfied: torch in /opt/conda/lib/python3.10/site-packages (from bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (2.2.1+cu121)\r\n",
- "Requirement already satisfied: python-dateutil>=2.8.2 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets==2.17.1) (2.9.0.post0)\r\n",
- "Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets==2.17.1) (2023.3.post1)\r\n",
- "Requirement already satisfied: tzdata>=2022.1 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets==2.17.1) (2023.4)\r\n",
- "Collecting tyro (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git)\r\n",
- " Downloading tyro-0.7.3-py3-none-any.whl.metadata (7.7 kB)\r\n",
- "Requirement already satisfied: transformers>=4.38.2 in /opt/conda/lib/python3.10/site-packages (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (4.38.2)\r\n",
- "Requirement already satisfied: sentencepiece in /opt/conda/lib/python3.10/site-packages (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (0.2.0)\r\n",
- "Requirement already satisfied: psutil in /opt/conda/lib/python3.10/site-packages (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (5.9.3)\r\n",
- "Requirement already satisfied: wheel>=0.42.0 in /opt/conda/lib/python3.10/site-packages (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (0.42.0)\r\n",
- "Requirement already satisfied: accelerate>=0.26.1 in /opt/conda/lib/python3.10/site-packages (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (0.28.0)\r\n",
- "Collecting trl>=0.7.9 (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git)\r\n",
- " Downloading trl-0.8.1-py3-none-any.whl.metadata (11 kB)\r\n",
- "Collecting peft>=0.7.1 (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git)\r\n",
- " Downloading peft-0.10.0-py3-none-any.whl.metadata (13 kB)\r\n",
- "Requirement already satisfied: safetensors>=0.3.1 in /opt/conda/lib/python3.10/site-packages (from accelerate>=0.26.1->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (0.4.2)\r\n",
- "Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.10/site-packages (from python-dateutil>=2.8.2->pandas->datasets==2.17.1) (1.16.0)\r\n",
- "Requirement already satisfied: sympy in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (1.12)\r\n",
- "Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (3.2.1)\r\n",
- "Requirement already satisfied: jinja2 in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (3.1.2)\r\n",
- "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (12.1.105)\r\n",
- "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (12.1.105)\r\n",
- "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (12.1.105)\r\n",
- "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (8.9.2.26)\r\n",
- "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (12.1.3.1)\r\n",
- "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (11.0.2.54)\r\n",
- "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (10.3.2.106)\r\n",
- "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (11.4.5.107)\r\n",
- "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (12.1.0.106)\r\n",
- "Requirement already satisfied: nvidia-nccl-cu12==2.19.3 in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (2.19.3)\r\n",
- "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /opt/conda/lib/python3.10/site-packages (from torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (12.1.105)\r\n",
- "Requirement already satisfied: nvidia-nvjitlink-cu12 in /opt/conda/lib/python3.10/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (12.1.105)\r\n",
- "Requirement already satisfied: regex!=2019.12.17 in /opt/conda/lib/python3.10/site-packages (from transformers>=4.38.2->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (2023.12.25)\r\n",
- "Requirement already satisfied: tokenizers<0.19,>=0.14 in /opt/conda/lib/python3.10/site-packages (from transformers>=4.38.2->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (0.15.2)\r\n",
- "Requirement already satisfied: docstring-parser>=0.14.1 in /opt/conda/lib/python3.10/site-packages (from tyro->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (0.15)\r\n",
- "Requirement already satisfied: rich>=11.1.0 in /opt/conda/lib/python3.10/site-packages (from tyro->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (13.7.0)\r\n",
- "Collecting shtab>=1.5.6 (from tyro->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git)\r\n",
- " Downloading shtab-1.7.1-py3-none-any.whl.metadata (7.3 kB)\r\n",
- "Requirement already satisfied: markdown-it-py>=2.2.0 in /opt/conda/lib/python3.10/site-packages (from rich>=11.1.0->tyro->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (3.0.0)\r\n",
- "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /opt/conda/lib/python3.10/site-packages (from rich>=11.1.0->tyro->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (2.17.2)\r\n",
- "Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2->torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (2.1.3)\r\n",
- "Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.10/site-packages (from sympy->torch->bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (1.3.0)\r\n",
- "Requirement already satisfied: mdurl~=0.1 in /opt/conda/lib/python3.10/site-packages (from markdown-it-py>=2.2.0->rich>=11.1.0->tyro->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[kaggle-new]@ git+https://github.com/unslothai/unsloth.git) (0.1.2)\r\n",
- "Downloading datasets-2.17.1-py3-none-any.whl (536 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.7/536.7 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading fsspec-2023.10.0-py3-none-any.whl (166 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m166.4/166.4 kB\u001b[0m \u001b[31m10.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading pyarrow-15.0.2-cp310-cp310-manylinux_2_28_x86_64.whl (38.3 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m38.3/38.3 MB\u001b[0m \u001b[31m36.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading bitsandbytes-0.43.0-py3-none-manylinux_2_24_x86_64.whl (102.2 MB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m102.2/102.2 MB\u001b[0m \u001b[31m11.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB)\r\n",
- "Downloading peft-0.10.0-py3-none-any.whl (199 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m199.1/199.1 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading trl-0.8.1-py3-none-any.whl (225 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m225.0/225.0 kB\u001b[0m \u001b[31m11.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading tyro-0.7.3-py3-none-any.whl (79 kB)\r\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.8/79.8 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\r\n",
- "\u001b[?25hDownloading shtab-1.7.1-py3-none-any.whl (14 kB)\r\n",
- "Building wheels for collected packages: unsloth\r\n",
- " Building wheel for unsloth (pyproject.toml) ... \u001b[?25l-\b \b\\\b \b|\b \bdone\r\n",
- "\u001b[?25h Created wheel for unsloth: filename=unsloth-2024.3-py3-none-any.whl size=93934 sha256=34861411793a48098b4d9e04f35bc2ce841bfae25a980dd6ce151eecc1321a1a\r\n",
- " Stored in directory: /tmp/pip-ephem-wheel-cache-6kf3ks_c/wheels/ed/d4/e9/76fb290ee3df0a5fc21ce5c2c788e29e9607a2353d8342fd0d\r\n",
- "Successfully built unsloth\r\n",
- "Installing collected packages: unsloth, shtab, pyarrow-hotfix, pyarrow, fsspec, tyro, datasets, bitsandbytes, trl, peft\r\n",
- " Attempting uninstall: pyarrow\r\n",
- " Found existing installation: pyarrow 11.0.0\r\n",
- " Uninstalling pyarrow-11.0.0:\r\n",
- " Successfully uninstalled pyarrow-11.0.0\r\n",
- " Attempting uninstall: fsspec\r\n",
- " Found existing installation: fsspec 2024.3.0\r\n",
- " Uninstalling fsspec-2024.3.0:\r\n",
- " Successfully uninstalled fsspec-2024.3.0\r\n",
- " Attempting uninstall: datasets\r\n",
- " Found existing installation: datasets 2.1.0\r\n",
- " Uninstalling datasets-2.1.0:\r\n",
- " Successfully uninstalled datasets-2.1.0\r\n",
- "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n",
- "cudf 23.8.0 requires cubinlinker, which is not installed.\r\n",
- "cudf 23.8.0 requires cupy-cuda11x>=12.0.0, which is not installed.\r\n",
- "cudf 23.8.0 requires ptxcompiler, which is not installed.\r\n",
- "cuml 23.8.0 requires cupy-cuda11x>=12.0.0, which is not installed.\r\n",
- "dask-cudf 23.8.0 requires cupy-cuda11x>=12.0.0, which is not installed.\r\n",
- "apache-beam 2.46.0 requires dill<0.3.2,>=0.3.1.1, but you have dill 0.3.8 which is incompatible.\r\n",
- "apache-beam 2.46.0 requires numpy<1.25.0,>=1.14.3, but you have numpy 1.26.4 which is incompatible.\r\n",
- "apache-beam 2.46.0 requires pyarrow<10.0.0,>=3.0.0, but you have pyarrow 15.0.2 which is incompatible.\r\n",
- "beatrix-jupyterlab 2023.128.151533 requires jupyterlab~=3.6.0, but you have jupyterlab 4.1.5 which is incompatible.\r\n",
- "cudf 23.8.0 requires cuda-python<12.0a0,>=11.7.1, but you have cuda-python 12.4.0 which is incompatible.\r\n",
- "cudf 23.8.0 requires pandas<1.6.0dev0,>=1.3, but you have pandas 2.1.4 which is incompatible.\r\n",
- "cudf 23.8.0 requires protobuf<5,>=4.21, but you have protobuf 3.20.3 which is incompatible.\r\n",
- "cudf 23.8.0 requires pyarrow==11.*, but you have pyarrow 15.0.2 which is incompatible.\r\n",
- "cuml 23.8.0 requires dask==2023.7.1, but you have dask 2024.3.1 which is incompatible.\r\n",
- "dask-cuda 23.8.0 requires dask==2023.7.1, but you have dask 2024.3.1 which is incompatible.\r\n",
- "dask-cuda 23.8.0 requires pandas<1.6.0dev0,>=1.3, but you have pandas 2.1.4 which is incompatible.\r\n",
- "dask-cudf 23.8.0 requires dask==2023.7.1, but you have dask 2024.3.1 which is incompatible.\r\n",
- "dask-cudf 23.8.0 requires pandas<1.6.0dev0,>=1.3, but you have pandas 2.1.4 which is incompatible.\r\n",
- "distributed 2023.7.1 requires dask==2023.7.1, but you have dask 2024.3.1 which is incompatible.\r\n",
- "gcsfs 2023.12.2.post1 requires fsspec==2023.12.2, but you have fsspec 2023.10.0 which is incompatible.\r\n",
- "raft-dask 23.8.0 requires dask==2023.7.1, but you have dask 2024.3.1 which is incompatible.\r\n",
- "s3fs 2024.3.0 requires fsspec==2024.3.0, but you have fsspec 2023.10.0 which is incompatible.\u001b[0m\u001b[31m\r\n",
- "\u001b[0mSuccessfully installed bitsandbytes-0.43.0 datasets-2.17.1 fsspec-2023.10.0 peft-0.10.0 pyarrow-15.0.2 pyarrow-hotfix-0.6 shtab-1.7.1 trl-0.8.1 tyro-0.7.3 unsloth-2024.3\r\n"
- ]
- }
- ],
- "source": [
- "#%%capture\n",
- "#import torch\n",
- "#major_version, minor_version = torch.cuda.get_device_capability()\n",
- "\n",
- "!pip install -U xformers --index-url https://download.pytorch.org/whl/cu121\n",
- "!pip install \"unsloth[kaggle-new] @ git+https://github.com/unslothai/unsloth.git\" triton datasets==2.17.1\n",
- "#if major_version >= 8:\n",
- "# # Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)\n",
- "# !pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes\n",
- "#else:\n",
- "# # Use this for older GPUs (V100, Tesla T4, RTX 20xx)\n",
- "# !pip install --no-deps xformers trl peft accelerate bitsandbytes\n",
- "\n",
- "import os\n",
- "os.environ[\"WANDB_DISABLED\"] = \"true\""
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c963a9d2",
- "metadata": {
- "id": "r2v_X2fA0Df5",
- "papermill": {
- "duration": 0.123192,
- "end_time": "2024-03-28T00:12:44.398766",
- "exception": false,
- "start_time": "2024-03-28T00:12:44.275574",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "* We support Llama, Mistral, CodeLlama, TinyLlama, Vicuna, Open Hermes etc\n",
- "* And Yi, Qwen ([llamafied](https://huggingface.co/models?sort=trending&search=qwen+llama)), Deepseek, all Llama, Mistral derived archs.\n",
- "* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n",
- "* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n",
- "* With [PR 26037](https://github.com/huggingface/transformers/pull/26037), we support downloading 4bit models **4x faster**! [Our repo](https://huggingface.co/unsloth) has Llama, Mistral 4bit models.\n",
- "* [**NEW**] We make Gemma 6 trillion tokens **2.5x faster**! See our [Gemma notebook](https://colab.research.google.com/drive/10NbwlsRChbma1v55m8LAPYG15uQv6HLo?usp=sharing)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "88a40779",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T00:12:44.654372Z",
- "iopub.status.busy": "2024-03-28T00:12:44.653667Z",
- "iopub.status.idle": "2024-03-28T00:13:38.483179Z",
- "shell.execute_reply": "2024-03-28T00:13:38.482338Z"
- },
- "id": "QmUBVEnvCDJv",
- "outputId": "40383ec5-b379-4fcd-ba5c-b5656b0ff129",
- "papermill": {
- "duration": 53.95967,
- "end_time": "2024-03-28T00:13:38.485764",
- "exception": false,
- "start_time": "2024-03-28T00:12:44.526094",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "58648d0ab785418089b24914c46df7a4",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "config.json: 0%| | 0.00/1.05k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "==((====))== Unsloth: Fast Mistral patching release 2024.3\n",
- " \\\\ /| GPU: Tesla T4. Max memory: 14.748 GB. Platform = Linux.\n",
- "O^O/ \\_/ \\ Pytorch: 2.2.1+cu121. CUDA = 7.5. CUDA Toolkit = 12.1.\n",
- "\\ / Bfloat16 = FALSE. Xformers = 0.0.25. FA = False.\n",
- " \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0291f4d1f4734954946a71afef1e1519",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "model.safetensors: 0%| | 0.00/4.13G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "944f3bb3fc0f4ef594424d1ed90f391b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "generation_config.json: 0%| | 0.00/116 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "9aeb5170934f4e7da9748e8859e40e30",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "tokenizer_config.json: 0%| | 0.00/971 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "92da558bad0e4330a2b4b3041ed24aad",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "tokenizer.model: 0%| | 0.00/493k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "59233cb5bb5849d0800cde9d3c129184",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "special_tokens_map.json: 0%| | 0.00/438 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "84af480c5f6c4ad490074ef103af5628",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "tokenizer.json: 0%| | 0.00/1.80M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "2024-03-28 00:13:27.566798: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
- "2024-03-28 00:13:27.566934: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
- "2024-03-28 00:13:27.741422: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n"
- ]
- }
- ],
- "source": [
- "from unsloth import FastLanguageModel\n",
- "import torch\n",
- "max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n",
- "dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n",
- "load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.\n",
- "\n",
- "# 4bit pre quantized models we support for 4x faster downloading + no OOMs.\n",
- "fourbit_models = [\n",
- " \"unsloth/mistral-7b-bnb-4bit\",\n",
- " \"unsloth/mistral-7b-instruct-v0.2-bnb-4bit\",\n",
- " \"unsloth/llama-2-7b-bnb-4bit\",\n",
- " \"unsloth/llama-2-13b-bnb-4bit\",\n",
- " \"unsloth/codellama-34b-bnb-4bit\",\n",
- " \"unsloth/tinyllama-bnb-4bit\",\n",
- " \"unsloth/gemma-7b-bnb-4bit\", # New Google 6 trillion tokens model 2.5x faster!\n",
- " \"unsloth/gemma-2b-bnb-4bit\",\n",
- "] # More models at https://huggingface.co/unsloth\n",
- "\n",
- "model, tokenizer = FastLanguageModel.from_pretrained(\n",
- " model_name = \"unsloth/mistral-7b-bnb-4bit\", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B\n",
- " max_seq_length = max_seq_length,\n",
- " dtype = dtype,\n",
- " load_in_4bit = load_in_4bit,\n",
- " # token = \"hf_...\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "ca908244",
- "metadata": {
- "id": "SXd9bTZd1aaL",
- "papermill": {
- "duration": 0.12735,
- "end_time": "2024-03-28T00:13:38.741441",
- "exception": false,
- "start_time": "2024-03-28T00:13:38.614091",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "We now add LoRA adapters so we only need to update 1 to 10% of all parameters!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "9a50c1ab",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T00:13:38.993225Z",
- "iopub.status.busy": "2024-03-28T00:13:38.992478Z",
- "iopub.status.idle": "2024-03-28T00:13:39.865675Z",
- "shell.execute_reply": "2024-03-28T00:13:39.864586Z"
- },
- "id": "6bZsfBuZDeCL",
- "outputId": "4c986b9b-ee42-48d6-ba35-6a709e919c82",
- "papermill": {
- "duration": 1.001126,
- "end_time": "2024-03-28T00:13:39.869351",
- "exception": false,
- "start_time": "2024-03-28T00:13:38.868225",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Unsloth 2024.3 patched 32 layers with 32 QKV layers, 32 O layers and 32 MLP layers.\n"
- ]
- }
- ],
- "source": [
- "model = FastLanguageModel.get_peft_model(\n",
- " model,\n",
- " r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n",
- " target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n",
- " \"gate_proj\", \"up_proj\", \"down_proj\",],\n",
- " lora_alpha = 16,\n",
- " lora_dropout = 0, # Supports any, but = 0 is optimized\n",
- " bias = \"none\", # Supports any, but = \"none\" is optimized\n",
- " use_gradient_checkpointing = True,\n",
- " random_state = 3407,\n",
- " use_rslora = False, # We support rank stabilized LoRA\n",
- " loftq_config = None, # And LoftQ\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0b7c4848",
- "metadata": {
- "id": "vITh0KVJ10qX",
- "papermill": {
- "duration": 0.124172,
- "end_time": "2024-03-28T00:13:40.129776",
- "exception": false,
- "start_time": "2024-03-28T00:13:40.005604",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "\n",
- "### Data Prep\n",
- "We now use the `ChatML` format for conversation style finetunes. We use [Open Assistant conversations](https://huggingface.co/datasets/philschmid/guanaco-sharegpt-style) in ShareGPT style. ChatML renders multi turn conversations like below:\n",
- "\n",
- "```\n",
- "<|im_start|>system\n",
- "You are a helpful assistant.<|im_end|>\n",
- "<|im_start|>user\n",
- "What's the capital of France?<|im_end|>\n",
- "<|im_start|>assistant\n",
- "Paris.\n",
- "```\n",
- "\n",
- "**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n",
- "\n",
- "We use our `get_chat_template` function to get the correct chat template. We support `zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old` and our own optimized `unsloth` template.\n",
- "\n",
- "Normally one has to train `<|im_start|>` and `<|im_end|>`. We instead map `<|im_end|>` to be the EOS token, and leave `<|im_start|>` as is. This requires no additional training of additional tokens.\n",
- "\n",
- "Note ShareGPT uses `{\"from\": \"human\", \"value\" : \"Hi\"}` and not `{\"role\": \"user\", \"content\" : \"Hi\"}`, so we use `mapping` to map it.\n",
- "\n",
- "For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "0d33d99d",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T00:13:40.375057Z",
- "iopub.status.busy": "2024-03-28T00:13:40.374718Z",
- "iopub.status.idle": "2024-03-28T00:13:41.633504Z",
- "shell.execute_reply": "2024-03-28T00:13:41.632366Z"
- },
- "id": "LjY75GoYUCB8",
- "outputId": "50c7b539-b750-4964-fa4a-45a99d5923f1",
- "papermill": {
- "duration": 1.382761,
- "end_time": "2024-03-28T00:13:41.635817",
- "exception": false,
- "start_time": "2024-03-28T00:13:40.253056",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Unsloth: Will map <|im_end|> to EOS = .\n"
- ]
- }
- ],
- "source": [
- "from datasets import load_dataset\n",
- "import json\n",
- "from unsloth.chat_templates import get_chat_template\n",
- "\n",
- "tokenizer = get_chat_template(\n",
- " tokenizer,\n",
- " chat_template = \"chatml\", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth\n",
- " #mapping = {\"role\" : \"from\", \"content\" : \"value\", \"user\" : \"human\", \"assistant\" : \"gpt\"}, # ShareGPT style\n",
- " map_eos_token = True, # Maps <|im_end|> to instead\n",
- ")\n",
- "\n",
- "def formatting_prompts_func(convos):\n",
- " texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]\n",
- " return { \"text\" : texts, }\n",
- "\n",
- "with open(\"/kaggle/input/the-group-chat/output-10k-c.json\") as chatfile:\n",
- " convos = [json.loads(j) for j in chatfile.readlines()]\n",
- "\n",
- "dataset = formatting_prompts_func(convos)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f75a3f33",
- "metadata": {
- "id": "cHiVoToneynS",
- "papermill": {
- "duration": 0.127199,
- "end_time": "2024-03-28T00:13:41.890438",
- "exception": false,
- "start_time": "2024-03-28T00:13:41.763239",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "Let's see how the `ChatML` format works by printing the 5th element"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "08ef098f",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T00:13:42.144988Z",
- "iopub.status.busy": "2024-03-28T00:13:42.144281Z",
- "iopub.status.idle": "2024-03-28T00:13:42.148878Z",
- "shell.execute_reply": "2024-03-28T00:13:42.147833Z"
- },
- "id": "U5iEWrUkevpE",
- "outputId": "e28b6889-29f9-400f-a08c-5fc7d5cbc5db",
- "papermill": {
- "duration": 0.133687,
- "end_time": "2024-03-28T00:13:42.150735",
- "exception": false,
- "start_time": "2024-03-28T00:13:42.017048",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "#dataset[5][\"conversations\"]\n",
- "#print(dataset[\"text\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a77a6d20",
- "metadata": {
- "id": "GuKOAUDpUeDL",
- "papermill": {
- "duration": 0.121878,
- "end_time": "2024-03-28T00:13:42.399195",
- "exception": false,
- "start_time": "2024-03-28T00:13:42.277317",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "If you're looking to make your own chat template, that also is possible! You must use the Jinja templating regime. We provide our own stripped down version of the `Unsloth template` which we find to be more efficient, and leverages ChatML, Zephyr and Alpaca styles.\n",
- "\n",
- "More info on chat templates on [our wiki page!](https://github.com/unslothai/unsloth/wiki#chat-templates)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "cdd24991",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T00:13:42.653294Z",
- "iopub.status.busy": "2024-03-28T00:13:42.652894Z",
- "iopub.status.idle": "2024-03-28T00:13:42.658835Z",
- "shell.execute_reply": "2024-03-28T00:13:42.657902Z"
- },
- "id": "p31Z-S6FUieB",
- "papermill": {
- "duration": 0.136303,
- "end_time": "2024-03-28T00:13:42.660931",
- "exception": false,
- "start_time": "2024-03-28T00:13:42.524628",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "unsloth_template = \\\n",
- " \"{{ bos_token }}\"\\\n",
- " \"{{ 'You are a helpful assistant to the user\\n' }}\"\\\n",
- " \"{% endif %}\"\\\n",
- " \"{% for message in messages %}\"\\\n",
- " \"{% if message['role'] == 'user' %}\"\\\n",
- " \"{{ '>>> User: ' + message['content'] + '\\n' }}\"\\\n",
- " \"{% elif message['role'] == 'assistant' %}\"\\\n",
- " \"{{ '>>> Assistant: ' + message['content'] + eos_token + '\\n' }}\"\\\n",
- " \"{% endif %}\"\\\n",
- " \"{% endfor %}\"\\\n",
- " \"{% if add_generation_prompt %}\"\\\n",
- " \"{{ '>>> Assistant: ' }}\"\\\n",
- " \"{% endif %}\"\n",
- "unsloth_eos_token = \"eos_token\"\n",
- "\n",
- "if False:\n",
- " tokenizer = get_chat_template(\n",
- " tokenizer,\n",
- " chat_template = (unsloth_template, unsloth_eos_token,), # You must provide a template and EOS token\n",
- " mapping = {\"role\" : \"from\", \"content\" : \"value\", \"user\" : \"human\", \"assistant\" : \"gpt\"}, # ShareGPT style\n",
- " map_eos_token = True, # Maps <|im_end|> to instead\n",
- " )"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "44e5c271",
- "metadata": {
- "id": "idAEIeSQ3xdS",
- "papermill": {
- "duration": 0.127599,
- "end_time": "2024-03-28T00:13:42.915115",
- "exception": false,
- "start_time": "2024-03-28T00:13:42.787516",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "\n",
- "### Train the model\n",
- "Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "84d94e51",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T00:13:43.163495Z",
- "iopub.status.busy": "2024-03-28T00:13:43.162623Z",
- "iopub.status.idle": "2024-03-28T00:13:43.243458Z",
- "shell.execute_reply": "2024-03-28T00:13:43.242622Z"
- },
- "papermill": {
- "duration": 0.20747,
- "end_time": "2024-03-28T00:13:43.245965",
- "exception": false,
- "start_time": "2024-03-28T00:13:43.038495",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "from datasets import Dataset\n",
- "dataset = Dataset.from_dict(dataset)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "099afa9e",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T00:13:43.492984Z",
- "iopub.status.busy": "2024-03-28T00:13:43.492622Z",
- "iopub.status.idle": "2024-03-28T00:13:48.324291Z",
- "shell.execute_reply": "2024-03-28T00:13:48.323307Z"
- },
- "id": "95_Nn-89DhsL",
- "outputId": "c13d3e90-5342-4535-9541-98f9120dfe2b",
- "papermill": {
- "duration": 4.95752,
- "end_time": "2024-03-28T00:13:48.326701",
- "exception": false,
- "start_time": "2024-03-28T00:13:43.369181",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the --report_to flag to control the integrations used for logging result (for instance --report_to none).\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "e363d483a5134f5d873c11f936d2d9f5",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Map (num_proc=2): 0%| | 0/10000 [00:00, ? examples/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "from trl import SFTTrainer\n",
- "from transformers import TrainingArguments\n",
- "\n",
- "trainer = SFTTrainer(\n",
- " model = model,\n",
- " tokenizer = tokenizer,\n",
- " train_dataset = dataset,\n",
- " dataset_text_field = \"text\",\n",
- " max_seq_length = max_seq_length,\n",
- " dataset_num_proc = 2,\n",
- " packing = False, # Can make training 5x faster for short sequences.\n",
- " args = TrainingArguments(\n",
- " per_device_train_batch_size = 2,\n",
- " gradient_accumulation_steps = 4,\n",
- " warmup_steps = 5,\n",
- " num_train_epochs=1,\n",
- " learning_rate = 2e-4,\n",
- " fp16 = not torch.cuda.is_bf16_supported(),\n",
- " bf16 = torch.cuda.is_bf16_supported(),\n",
- " logging_steps = 1,\n",
- " optim = \"adamw_8bit\",\n",
- " weight_decay = 0.01,\n",
- " lr_scheduler_type = \"linear\",\n",
- " seed = 3407,\n",
- " output_dir = \"outputs\",\n",
- " ),\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "56281856",
- "metadata": {
- "cellView": "form",
- "execution": {
- "iopub.execute_input": "2024-03-28T00:13:48.575758Z",
- "iopub.status.busy": "2024-03-28T00:13:48.575334Z",
- "iopub.status.idle": "2024-03-28T00:13:48.582620Z",
- "shell.execute_reply": "2024-03-28T00:13:48.581689Z"
- },
- "id": "2ejIt2xSNKKp",
- "outputId": "a537db02-e673-44da-8889-5fa95a5e2d51",
- "papermill": {
- "duration": 0.137429,
- "end_time": "2024-03-28T00:13:48.585471",
- "exception": false,
- "start_time": "2024-03-28T00:13:48.448042",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "GPU = Tesla T4. Max memory = 14.748 GB.\n",
- "4.5 GB of memory reserved.\n"
- ]
- }
- ],
- "source": [
- "#@title Show current memory stats\n",
- "gpu_stats = torch.cuda.get_device_properties(0)\n",
- "start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
- "max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n",
- "print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n",
- "print(f\"{start_gpu_memory} GB of memory reserved.\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "a4e1702c",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T00:13:48.854943Z",
- "iopub.status.busy": "2024-03-28T00:13:48.854292Z",
- "iopub.status.idle": "2024-03-28T03:52:49.428064Z",
- "shell.execute_reply": "2024-03-28T03:52:49.427099Z"
- },
- "id": "yqxqAZ7KJ4oL",
- "outputId": "db7bae40-bf0a-4908-8867-a5dfe933e1f3",
- "papermill": {
- "duration": 13140.716117,
- "end_time": "2024-03-28T03:52:49.430510",
- "exception": false,
- "start_time": "2024-03-28T00:13:48.714393",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1\n",
- " \\\\ /| Num examples = 10,000 | Num Epochs = 1\n",
- "O^O/ \\_/ \\ Batch size per device = 2 | Gradient Accumulation steps = 4\n",
- "\\ / Total batch size = 8 | Total steps = 1,250\n",
- " \"-____-\" Number of trainable parameters = 41,943,040\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [1250/1250 3:38:46, Epoch 1/1]\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " Step | \n",
- " Training Loss | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 1 | \n",
- " 2.415600 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 2.560600 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 2.358100 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 2.018800 | \n",
- "
\n",
- " \n",
- " 5 | \n",
- " 1.869800 | \n",
- "
\n",
- " \n",
- " 6 | \n",
- " 1.859900 | \n",
- "
\n",
- " \n",
- " 7 | \n",
- " 1.855700 | \n",
- "
\n",
- " \n",
- " 8 | \n",
- " 1.985000 | \n",
- "
\n",
- " \n",
- " 9 | \n",
- " 1.739100 | \n",
- "
\n",
- " \n",
- " 10 | \n",
- " 1.857900 | \n",
- "
\n",
- " \n",
- " 11 | \n",
- " 1.858300 | \n",
- "
\n",
- " \n",
- " 12 | \n",
- " 1.574900 | \n",
- "
\n",
- " \n",
- " 13 | \n",
- " 1.680000 | \n",
- "
\n",
- " \n",
- " 14 | \n",
- " 1.615100 | \n",
- "
\n",
- " \n",
- " 15 | \n",
- " 1.720000 | \n",
- "
\n",
- " \n",
- " 16 | \n",
- " 1.731600 | \n",
- "
\n",
- " \n",
- " 17 | \n",
- " 1.727100 | \n",
- "
\n",
- " \n",
- " 18 | \n",
- " 1.587100 | \n",
- "
\n",
- " \n",
- " 19 | \n",
- " 1.579300 | \n",
- "
\n",
- " \n",
- " 20 | \n",
- " 1.642300 | \n",
- "
\n",
- " \n",
- " 21 | \n",
- " 1.487200 | \n",
- "
\n",
- " \n",
- " 22 | \n",
- " 1.585400 | \n",
- "
\n",
- " \n",
- " 23 | \n",
- " 1.611900 | \n",
- "
\n",
- " \n",
- " 24 | \n",
- " 1.598700 | \n",
- "
\n",
- " \n",
- " 25 | \n",
- " 1.617600 | \n",
- "
\n",
- " \n",
- " 26 | \n",
- " 1.511700 | \n",
- "
\n",
- " \n",
- " 27 | \n",
- " 1.805500 | \n",
- "
\n",
- " \n",
- " 28 | \n",
- " 1.569000 | \n",
- "
\n",
- " \n",
- " 29 | \n",
- " 1.652700 | \n",
- "
\n",
- " \n",
- " 30 | \n",
- " 1.421700 | \n",
- "
\n",
- " \n",
- " 31 | \n",
- " 1.666500 | \n",
- "
\n",
- " \n",
- " 32 | \n",
- " 1.633400 | \n",
- "
\n",
- " \n",
- " 33 | \n",
- " 1.630900 | \n",
- "
\n",
- " \n",
- " 34 | \n",
- " 1.744100 | \n",
- "
\n",
- " \n",
- " 35 | \n",
- " 1.577500 | \n",
- "
\n",
- " \n",
- " 36 | \n",
- " 1.665400 | \n",
- "
\n",
- " \n",
- " 37 | \n",
- " 1.569500 | \n",
- "
\n",
- " \n",
- " 38 | \n",
- " 1.597500 | \n",
- "
\n",
- " \n",
- " 39 | \n",
- " 1.703800 | \n",
- "
\n",
- " \n",
- " 40 | \n",
- " 1.556500 | \n",
- "
\n",
- " \n",
- " 41 | \n",
- " 1.451800 | \n",
- "
\n",
- " \n",
- " 42 | \n",
- " 1.629500 | \n",
- "
\n",
- " \n",
- " 43 | \n",
- " 1.538500 | \n",
- "
\n",
- " \n",
- " 44 | \n",
- " 1.508600 | \n",
- "
\n",
- " \n",
- " 45 | \n",
- " 1.439400 | \n",
- "
\n",
- " \n",
- " 46 | \n",
- " 1.590000 | \n",
- "
\n",
- " \n",
- " 47 | \n",
- " 1.568200 | \n",
- "
\n",
- " \n",
- " 48 | \n",
- " 1.554900 | \n",
- "
\n",
- " \n",
- " 49 | \n",
- " 1.486900 | \n",
- "
\n",
- " \n",
- " 50 | \n",
- " 1.617100 | \n",
- "
\n",
- " \n",
- " 51 | \n",
- " 1.695700 | \n",
- "
\n",
- " \n",
- " 52 | \n",
- " 1.470600 | \n",
- "
\n",
- " \n",
- " 53 | \n",
- " 1.680400 | \n",
- "
\n",
- " \n",
- " 54 | \n",
- " 1.605500 | \n",
- "
\n",
- " \n",
- " 55 | \n",
- " 1.472900 | \n",
- "
\n",
- " \n",
- " 56 | \n",
- " 1.636600 | \n",
- "
\n",
- " \n",
- " 57 | \n",
- " 1.527600 | \n",
- "
\n",
- " \n",
- " 58 | \n",
- " 1.579300 | \n",
- "
\n",
- " \n",
- " 59 | \n",
- " 1.551700 | \n",
- "
\n",
- " \n",
- " 60 | \n",
- " 1.503900 | \n",
- "
\n",
- " \n",
- " 61 | \n",
- " 1.364500 | \n",
- "
\n",
- " \n",
- " 62 | \n",
- " 1.575300 | \n",
- "
\n",
- " \n",
- " 63 | \n",
- " 1.516700 | \n",
- "
\n",
- " \n",
- " 64 | \n",
- " 1.632000 | \n",
- "
\n",
- " \n",
- " 65 | \n",
- " 1.430900 | \n",
- "
\n",
- " \n",
- " 66 | \n",
- " 1.542000 | \n",
- "
\n",
- " \n",
- " 67 | \n",
- " 1.609800 | \n",
- "
\n",
- " \n",
- " 68 | \n",
- " 1.647700 | \n",
- "
\n",
- " \n",
- " 69 | \n",
- " 1.478100 | \n",
- "
\n",
- " \n",
- " 70 | \n",
- " 1.328200 | \n",
- "
\n",
- " \n",
- " 71 | \n",
- " 1.725000 | \n",
- "
\n",
- " \n",
- " 72 | \n",
- " 1.522400 | \n",
- "
\n",
- " \n",
- " 73 | \n",
- " 1.557200 | \n",
- "
\n",
- " \n",
- " 74 | \n",
- " 1.670000 | \n",
- "
\n",
- " \n",
- " 75 | \n",
- " 1.648900 | \n",
- "
\n",
- " \n",
- " 76 | \n",
- " 1.670400 | \n",
- "
\n",
- " \n",
- " 77 | \n",
- " 1.615300 | \n",
- "
\n",
- " \n",
- " 78 | \n",
- " 1.541800 | \n",
- "
\n",
- " \n",
- " 79 | \n",
- " 1.549200 | \n",
- "
\n",
- " \n",
- " 80 | \n",
- " 1.544500 | \n",
- "
\n",
- " \n",
- " 81 | \n",
- " 1.423300 | \n",
- "
\n",
- " \n",
- " 82 | \n",
- " 1.300900 | \n",
- "
\n",
- " \n",
- " 83 | \n",
- " 1.626600 | \n",
- "
\n",
- " \n",
- " 84 | \n",
- " 1.585000 | \n",
- "
\n",
- " \n",
- " 85 | \n",
- " 1.444500 | \n",
- "
\n",
- " \n",
- " 86 | \n",
- " 1.598200 | \n",
- "
\n",
- " \n",
- " 87 | \n",
- " 1.541000 | \n",
- "
\n",
- " \n",
- " 88 | \n",
- " 1.429500 | \n",
- "
\n",
- " \n",
- " 89 | \n",
- " 1.517300 | \n",
- "
\n",
- " \n",
- " 90 | \n",
- " 1.539100 | \n",
- "
\n",
- " \n",
- " 91 | \n",
- " 1.604200 | \n",
- "
\n",
- " \n",
- " 92 | \n",
- " 1.504300 | \n",
- "
\n",
- " \n",
- " 93 | \n",
- " 1.520200 | \n",
- "
\n",
- " \n",
- " 94 | \n",
- " 1.459000 | \n",
- "
\n",
- " \n",
- " 95 | \n",
- " 1.619900 | \n",
- "
\n",
- " \n",
- " 96 | \n",
- " 1.629000 | \n",
- "
\n",
- " \n",
- " 97 | \n",
- " 1.507000 | \n",
- "
\n",
- " \n",
- " 98 | \n",
- " 1.455300 | \n",
- "
\n",
- " \n",
- " 99 | \n",
- " 1.461700 | \n",
- "
\n",
- " \n",
- " 100 | \n",
- " 1.513500 | \n",
- "
\n",
- " \n",
- " 101 | \n",
- " 1.521500 | \n",
- "
\n",
- " \n",
- " 102 | \n",
- " 1.658100 | \n",
- "
\n",
- " \n",
- " 103 | \n",
- " 1.579500 | \n",
- "
\n",
- " \n",
- " 104 | \n",
- " 1.430100 | \n",
- "
\n",
- " \n",
- " 105 | \n",
- " 1.591500 | \n",
- "
\n",
- " \n",
- " 106 | \n",
- " 1.620900 | \n",
- "
\n",
- " \n",
- " 107 | \n",
- " 1.681300 | \n",
- "
\n",
- " \n",
- " 108 | \n",
- " 1.662900 | \n",
- "
\n",
- " \n",
- " 109 | \n",
- " 1.717200 | \n",
- "
\n",
- " \n",
- " 110 | \n",
- " 1.656000 | \n",
- "
\n",
- " \n",
- " 111 | \n",
- " 1.545400 | \n",
- "
\n",
- " \n",
- " 112 | \n",
- " 1.434400 | \n",
- "
\n",
- " \n",
- " 113 | \n",
- " 1.665900 | \n",
- "
\n",
- " \n",
- " 114 | \n",
- " 1.483000 | \n",
- "
\n",
- " \n",
- " 115 | \n",
- " 1.411300 | \n",
- "
\n",
- " \n",
- " 116 | \n",
- " 1.549000 | \n",
- "
\n",
- " \n",
- " 117 | \n",
- " 1.627200 | \n",
- "
\n",
- " \n",
- " 118 | \n",
- " 1.608600 | \n",
- "
\n",
- " \n",
- " 119 | \n",
- " 1.549700 | \n",
- "
\n",
- " \n",
- " 120 | \n",
- " 1.560800 | \n",
- "
\n",
- " \n",
- " 121 | \n",
- " 1.581400 | \n",
- "
\n",
- " \n",
- " 122 | \n",
- " 1.586100 | \n",
- "
\n",
- " \n",
- " 123 | \n",
- " 1.442700 | \n",
- "
\n",
- " \n",
- " 124 | \n",
- " 1.666800 | \n",
- "
\n",
- " \n",
- " 125 | \n",
- " 1.563900 | \n",
- "
\n",
- " \n",
- " 126 | \n",
- " 1.550300 | \n",
- "
\n",
- " \n",
- " 127 | \n",
- " 1.475600 | \n",
- "
\n",
- " \n",
- " 128 | \n",
- " 1.470400 | \n",
- "
\n",
- " \n",
- " 129 | \n",
- " 1.605000 | \n",
- "
\n",
- " \n",
- " 130 | \n",
- " 1.546100 | \n",
- "
\n",
- " \n",
- " 131 | \n",
- " 1.552900 | \n",
- "
\n",
- " \n",
- " 132 | \n",
- " 1.562300 | \n",
- "
\n",
- " \n",
- " 133 | \n",
- " 1.468900 | \n",
- "
\n",
- " \n",
- " 134 | \n",
- " 1.368200 | \n",
- "
\n",
- " \n",
- " 135 | \n",
- " 1.545800 | \n",
- "
\n",
- " \n",
- " 136 | \n",
- " 1.519900 | \n",
- "
\n",
- " \n",
- " 137 | \n",
- " 1.646300 | \n",
- "
\n",
- " \n",
- " 138 | \n",
- " 1.588800 | \n",
- "
\n",
- " \n",
- " 139 | \n",
- " 1.550300 | \n",
- "
\n",
- " \n",
- " 140 | \n",
- " 1.484800 | \n",
- "
\n",
- " \n",
- " 141 | \n",
- " 1.581600 | \n",
- "
\n",
- " \n",
- " 142 | \n",
- " 1.623200 | \n",
- "
\n",
- " \n",
- " 143 | \n",
- " 1.664700 | \n",
- "
\n",
- " \n",
- " 144 | \n",
- " 1.538800 | \n",
- "
\n",
- " \n",
- " 145 | \n",
- " 1.662800 | \n",
- "
\n",
- " \n",
- " 146 | \n",
- " 1.593500 | \n",
- "
\n",
- " \n",
- " 147 | \n",
- " 1.419500 | \n",
- "
\n",
- " \n",
- " 148 | \n",
- " 1.656200 | \n",
- "
\n",
- " \n",
- " 149 | \n",
- " 1.479400 | \n",
- "
\n",
- " \n",
- " 150 | \n",
- " 1.512500 | \n",
- "
\n",
- " \n",
- " 151 | \n",
- " 1.528800 | \n",
- "
\n",
- " \n",
- " 152 | \n",
- " 1.500800 | \n",
- "
\n",
- " \n",
- " 153 | \n",
- " 1.597800 | \n",
- "
\n",
- " \n",
- " 154 | \n",
- " 1.548600 | \n",
- "
\n",
- " \n",
- " 155 | \n",
- " 1.626200 | \n",
- "
\n",
- " \n",
- " 156 | \n",
- " 1.633400 | \n",
- "
\n",
- " \n",
- " 157 | \n",
- " 1.536100 | \n",
- "
\n",
- " \n",
- " 158 | \n",
- " 1.535300 | \n",
- "
\n",
- " \n",
- " 159 | \n",
- " 1.571300 | \n",
- "
\n",
- " \n",
- " 160 | \n",
- " 1.461200 | \n",
- "
\n",
- " \n",
- " 161 | \n",
- " 1.516200 | \n",
- "
\n",
- " \n",
- " 162 | \n",
- " 1.465500 | \n",
- "
\n",
- " \n",
- " 163 | \n",
- " 1.563900 | \n",
- "
\n",
- " \n",
- " 164 | \n",
- " 1.599900 | \n",
- "
\n",
- " \n",
- " 165 | \n",
- " 1.494400 | \n",
- "
\n",
- " \n",
- " 166 | \n",
- " 1.550500 | \n",
- "
\n",
- " \n",
- " 167 | \n",
- " 1.382100 | \n",
- "
\n",
- " \n",
- " 168 | \n",
- " 1.550800 | \n",
- "
\n",
- " \n",
- " 169 | \n",
- " 1.554000 | \n",
- "
\n",
- " \n",
- " 170 | \n",
- " 1.499200 | \n",
- "
\n",
- " \n",
- " 171 | \n",
- " 1.619500 | \n",
- "
\n",
- " \n",
- " 172 | \n",
- " 1.571800 | \n",
- "
\n",
- " \n",
- " 173 | \n",
- " 1.552700 | \n",
- "
\n",
- " \n",
- " 174 | \n",
- " 1.360500 | \n",
- "
\n",
- " \n",
- " 175 | \n",
- " 1.457600 | \n",
- "
\n",
- " \n",
- " 176 | \n",
- " 1.528500 | \n",
- "
\n",
- " \n",
- " 177 | \n",
- " 1.450600 | \n",
- "
\n",
- " \n",
- " 178 | \n",
- " 1.497100 | \n",
- "
\n",
- " \n",
- " 179 | \n",
- " 1.415400 | \n",
- "
\n",
- " \n",
- " 180 | \n",
- " 1.549900 | \n",
- "
\n",
- " \n",
- " 181 | \n",
- " 1.459800 | \n",
- "
\n",
- " \n",
- " 182 | \n",
- " 1.653100 | \n",
- "
\n",
- " \n",
- " 183 | \n",
- " 1.255300 | \n",
- "
\n",
- " \n",
- " 184 | \n",
- " 1.511100 | \n",
- "
\n",
- " \n",
- " 185 | \n",
- " 1.487700 | \n",
- "
\n",
- " \n",
- " 186 | \n",
- " 1.678500 | \n",
- "
\n",
- " \n",
- " 187 | \n",
- " 1.566400 | \n",
- "
\n",
- " \n",
- " 188 | \n",
- " 1.479300 | \n",
- "
\n",
- " \n",
- " 189 | \n",
- " 1.503900 | \n",
- "
\n",
- " \n",
- " 190 | \n",
- " 1.493700 | \n",
- "
\n",
- " \n",
- " 191 | \n",
- " 1.468400 | \n",
- "
\n",
- " \n",
- " 192 | \n",
- " 1.499400 | \n",
- "
\n",
- " \n",
- " 193 | \n",
- " 1.462300 | \n",
- "
\n",
- " \n",
- " 194 | \n",
- " 1.606200 | \n",
- "
\n",
- " \n",
- " 195 | \n",
- " 1.726000 | \n",
- "
\n",
- " \n",
- " 196 | \n",
- " 1.424700 | \n",
- "
\n",
- " \n",
- " 197 | \n",
- " 1.560500 | \n",
- "
\n",
- " \n",
- " 198 | \n",
- " 1.572200 | \n",
- "
\n",
- " \n",
- " 199 | \n",
- " 1.694600 | \n",
- "
\n",
- " \n",
- " 200 | \n",
- " 1.508900 | \n",
- "
\n",
- " \n",
- " 201 | \n",
- " 1.465600 | \n",
- "
\n",
- " \n",
- " 202 | \n",
- " 1.533500 | \n",
- "
\n",
- " \n",
- " 203 | \n",
- " 1.531400 | \n",
- "
\n",
- " \n",
- " 204 | \n",
- " 1.543200 | \n",
- "
\n",
- " \n",
- " 205 | \n",
- " 1.546500 | \n",
- "
\n",
- " \n",
- " 206 | \n",
- " 1.568600 | \n",
- "
\n",
- " \n",
- " 207 | \n",
- " 1.437200 | \n",
- "
\n",
- " \n",
- " 208 | \n",
- " 1.524100 | \n",
- "
\n",
- " \n",
- " 209 | \n",
- " 1.644300 | \n",
- "
\n",
- " \n",
- " 210 | \n",
- " 1.412500 | \n",
- "
\n",
- " \n",
- " 211 | \n",
- " 1.604700 | \n",
- "
\n",
- " \n",
- " 212 | \n",
- " 1.538300 | \n",
- "
\n",
- " \n",
- " 213 | \n",
- " 1.552600 | \n",
- "
\n",
- " \n",
- " 214 | \n",
- " 1.654100 | \n",
- "
\n",
- " \n",
- " 215 | \n",
- " 1.632300 | \n",
- "
\n",
- " \n",
- " 216 | \n",
- " 1.634200 | \n",
- "
\n",
- " \n",
- " 217 | \n",
- " 1.562400 | \n",
- "
\n",
- " \n",
- " 218 | \n",
- " 1.528000 | \n",
- "
\n",
- " \n",
- " 219 | \n",
- " 1.444400 | \n",
- "
\n",
- " \n",
- " 220 | \n",
- " 1.449800 | \n",
- "
\n",
- " \n",
- " 221 | \n",
- " 1.561900 | \n",
- "
\n",
- " \n",
- " 222 | \n",
- " 1.565400 | \n",
- "
\n",
- " \n",
- " 223 | \n",
- " 1.526800 | \n",
- "
\n",
- " \n",
- " 224 | \n",
- " 1.422900 | \n",
- "
\n",
- " \n",
- " 225 | \n",
- " 1.514200 | \n",
- "
\n",
- " \n",
- " 226 | \n",
- " 1.663700 | \n",
- "
\n",
- " \n",
- " 227 | \n",
- " 1.402100 | \n",
- "
\n",
- " \n",
- " 228 | \n",
- " 1.536400 | \n",
- "
\n",
- " \n",
- " 229 | \n",
- " 1.411200 | \n",
- "
\n",
- " \n",
- " 230 | \n",
- " 1.582300 | \n",
- "
\n",
- " \n",
- " 231 | \n",
- " 1.489300 | \n",
- "
\n",
- " \n",
- " 232 | \n",
- " 1.531800 | \n",
- "
\n",
- " \n",
- " 233 | \n",
- " 1.509500 | \n",
- "
\n",
- " \n",
- " 234 | \n",
- " 1.514100 | \n",
- "
\n",
- " \n",
- " 235 | \n",
- " 1.503800 | \n",
- "
\n",
- " \n",
- " 236 | \n",
- " 1.558800 | \n",
- "
\n",
- " \n",
- " 237 | \n",
- " 1.433500 | \n",
- "
\n",
- " \n",
- " 238 | \n",
- " 1.593100 | \n",
- "
\n",
- " \n",
- " 239 | \n",
- " 1.442500 | \n",
- "
\n",
- " \n",
- " 240 | \n",
- " 1.458900 | \n",
- "
\n",
- " \n",
- " 241 | \n",
- " 1.609300 | \n",
- "
\n",
- " \n",
- " 242 | \n",
- " 1.368500 | \n",
- "
\n",
- " \n",
- " 243 | \n",
- " 1.488500 | \n",
- "
\n",
- " \n",
- " 244 | \n",
- " 1.495500 | \n",
- "
\n",
- " \n",
- " 245 | \n",
- " 1.587800 | \n",
- "
\n",
- " \n",
- " 246 | \n",
- " 1.597700 | \n",
- "
\n",
- " \n",
- " 247 | \n",
- " 1.337800 | \n",
- "
\n",
- " \n",
- " 248 | \n",
- " 1.527200 | \n",
- "
\n",
- " \n",
- " 249 | \n",
- " 1.343900 | \n",
- "
\n",
- " \n",
- " 250 | \n",
- " 1.376000 | \n",
- "
\n",
- " \n",
- " 251 | \n",
- " 1.506100 | \n",
- "
\n",
- " \n",
- " 252 | \n",
- " 1.415800 | \n",
- "
\n",
- " \n",
- " 253 | \n",
- " 1.528500 | \n",
- "
\n",
- " \n",
- " 254 | \n",
- " 1.499300 | \n",
- "
\n",
- " \n",
- " 255 | \n",
- " 1.605400 | \n",
- "
\n",
- " \n",
- " 256 | \n",
- " 1.471000 | \n",
- "
\n",
- " \n",
- " 257 | \n",
- " 1.507400 | \n",
- "
\n",
- " \n",
- " 258 | \n",
- " 1.471800 | \n",
- "
\n",
- " \n",
- " 259 | \n",
- " 1.460100 | \n",
- "
\n",
- " \n",
- " 260 | \n",
- " 1.623500 | \n",
- "
\n",
- " \n",
- " 261 | \n",
- " 1.470000 | \n",
- "
\n",
- " \n",
- " 262 | \n",
- " 1.317300 | \n",
- "
\n",
- " \n",
- " 263 | \n",
- " 1.381800 | \n",
- "
\n",
- " \n",
- " 264 | \n",
- " 1.381500 | \n",
- "
\n",
- " \n",
- " 265 | \n",
- " 1.475200 | \n",
- "
\n",
- " \n",
- " 266 | \n",
- " 1.511700 | \n",
- "
\n",
- " \n",
- " 267 | \n",
- " 1.524100 | \n",
- "
\n",
- " \n",
- " 268 | \n",
- " 1.487300 | \n",
- "
\n",
- " \n",
- " 269 | \n",
- " 1.331600 | \n",
- "
\n",
- " \n",
- " 270 | \n",
- " 1.479500 | \n",
- "
\n",
- " \n",
- " 271 | \n",
- " 1.474400 | \n",
- "
\n",
- " \n",
- " 272 | \n",
- " 1.530400 | \n",
- "
\n",
- " \n",
- " 273 | \n",
- " 1.520800 | \n",
- "
\n",
- " \n",
- " 274 | \n",
- " 1.613700 | \n",
- "
\n",
- " \n",
- " 275 | \n",
- " 1.543800 | \n",
- "
\n",
- " \n",
- " 276 | \n",
- " 1.588600 | \n",
- "
\n",
- " \n",
- " 277 | \n",
- " 1.462600 | \n",
- "
\n",
- " \n",
- " 278 | \n",
- " 1.433200 | \n",
- "
\n",
- " \n",
- " 279 | \n",
- " 1.508600 | \n",
- "
\n",
- " \n",
- " 280 | \n",
- " 1.401300 | \n",
- "
\n",
- " \n",
- " 281 | \n",
- " 1.486700 | \n",
- "
\n",
- " \n",
- " 282 | \n",
- " 1.590800 | \n",
- "
\n",
- " \n",
- " 283 | \n",
- " 1.455800 | \n",
- "
\n",
- " \n",
- " 284 | \n",
- " 1.442800 | \n",
- "
\n",
- " \n",
- " 285 | \n",
- " 1.660000 | \n",
- "
\n",
- " \n",
- " 286 | \n",
- " 1.642900 | \n",
- "
\n",
- " \n",
- " 287 | \n",
- " 1.431400 | \n",
- "
\n",
- " \n",
- " 288 | \n",
- " 1.575100 | \n",
- "
\n",
- " \n",
- " 289 | \n",
- " 1.557800 | \n",
- "
\n",
- " \n",
- " 290 | \n",
- " 1.553200 | \n",
- "
\n",
- " \n",
- " 291 | \n",
- " 1.541500 | \n",
- "
\n",
- " \n",
- " 292 | \n",
- " 1.531600 | \n",
- "
\n",
- " \n",
- " 293 | \n",
- " 1.489800 | \n",
- "
\n",
- " \n",
- " 294 | \n",
- " 1.561100 | \n",
- "
\n",
- " \n",
- " 295 | \n",
- " 1.524400 | \n",
- "
\n",
- " \n",
- " 296 | \n",
- " 1.421400 | \n",
- "
\n",
- " \n",
- " 297 | \n",
- " 1.466800 | \n",
- "
\n",
- " \n",
- " 298 | \n",
- " 1.526200 | \n",
- "
\n",
- " \n",
- " 299 | \n",
- " 1.411400 | \n",
- "
\n",
- " \n",
- " 300 | \n",
- " 1.428100 | \n",
- "
\n",
- " \n",
- " 301 | \n",
- " 1.464500 | \n",
- "
\n",
- " \n",
- " 302 | \n",
- " 1.460000 | \n",
- "
\n",
- " \n",
- " 303 | \n",
- " 1.522700 | \n",
- "
\n",
- " \n",
- " 304 | \n",
- " 1.533100 | \n",
- "
\n",
- " \n",
- " 305 | \n",
- " 1.464400 | \n",
- "
\n",
- " \n",
- " 306 | \n",
- " 1.545100 | \n",
- "
\n",
- " \n",
- " 307 | \n",
- " 1.506800 | \n",
- "
\n",
- " \n",
- " 308 | \n",
- " 1.508500 | \n",
- "
\n",
- " \n",
- " 309 | \n",
- " 1.576900 | \n",
- "
\n",
- " \n",
- " 310 | \n",
- " 1.587500 | \n",
- "
\n",
- " \n",
- " 311 | \n",
- " 1.397800 | \n",
- "
\n",
- " \n",
- " 312 | \n",
- " 1.478100 | \n",
- "
\n",
- " \n",
- " 313 | \n",
- " 1.484200 | \n",
- "
\n",
- " \n",
- " 314 | \n",
- " 1.428500 | \n",
- "
\n",
- " \n",
- " 315 | \n",
- " 1.520700 | \n",
- "
\n",
- " \n",
- " 316 | \n",
- " 1.464100 | \n",
- "
\n",
- " \n",
- " 317 | \n",
- " 1.412200 | \n",
- "
\n",
- " \n",
- " 318 | \n",
- " 1.493000 | \n",
- "
\n",
- " \n",
- " 319 | \n",
- " 1.514200 | \n",
- "
\n",
- " \n",
- " 320 | \n",
- " 1.538200 | \n",
- "
\n",
- " \n",
- " 321 | \n",
- " 1.537100 | \n",
- "
\n",
- " \n",
- " 322 | \n",
- " 1.470500 | \n",
- "
\n",
- " \n",
- " 323 | \n",
- " 1.361800 | \n",
- "
\n",
- " \n",
- " 324 | \n",
- " 1.540100 | \n",
- "
\n",
- " \n",
- " 325 | \n",
- " 1.583800 | \n",
- "
\n",
- " \n",
- " 326 | \n",
- " 1.411400 | \n",
- "
\n",
- " \n",
- " 327 | \n",
- " 1.585000 | \n",
- "
\n",
- " \n",
- " 328 | \n",
- " 1.561200 | \n",
- "
\n",
- " \n",
- " 329 | \n",
- " 1.441400 | \n",
- "
\n",
- " \n",
- " 330 | \n",
- " 1.443100 | \n",
- "
\n",
- " \n",
- " 331 | \n",
- " 1.487900 | \n",
- "
\n",
- " \n",
- " 332 | \n",
- " 1.441400 | \n",
- "
\n",
- " \n",
- " 333 | \n",
- " 1.502100 | \n",
- "
\n",
- " \n",
- " 334 | \n",
- " 1.680100 | \n",
- "
\n",
- " \n",
- " 335 | \n",
- " 1.718200 | \n",
- "
\n",
- " \n",
- " 336 | \n",
- " 1.613200 | \n",
- "
\n",
- " \n",
- " 337 | \n",
- " 1.428600 | \n",
- "
\n",
- " \n",
- " 338 | \n",
- " 1.659800 | \n",
- "
\n",
- " \n",
- " 339 | \n",
- " 1.550100 | \n",
- "
\n",
- " \n",
- " 340 | \n",
- " 1.479900 | \n",
- "
\n",
- " \n",
- " 341 | \n",
- " 1.512500 | \n",
- "
\n",
- " \n",
- " 342 | \n",
- " 1.371900 | \n",
- "
\n",
- " \n",
- " 343 | \n",
- " 1.418200 | \n",
- "
\n",
- " \n",
- " 344 | \n",
- " 1.605200 | \n",
- "
\n",
- " \n",
- " 345 | \n",
- " 1.455900 | \n",
- "
\n",
- " \n",
- " 346 | \n",
- " 1.413300 | \n",
- "
\n",
- " \n",
- " 347 | \n",
- " 1.463400 | \n",
- "
\n",
- " \n",
- " 348 | \n",
- " 1.459700 | \n",
- "
\n",
- " \n",
- " 349 | \n",
- " 1.473400 | \n",
- "
\n",
- " \n",
- " 350 | \n",
- " 1.467900 | \n",
- "
\n",
- " \n",
- " 351 | \n",
- " 1.424800 | \n",
- "
\n",
- " \n",
- " 352 | \n",
- " 1.607200 | \n",
- "
\n",
- " \n",
- " 353 | \n",
- " 1.697500 | \n",
- "
\n",
- " \n",
- " 354 | \n",
- " 1.510900 | \n",
- "
\n",
- " \n",
- " 355 | \n",
- " 1.606700 | \n",
- "
\n",
- " \n",
- " 356 | \n",
- " 1.639400 | \n",
- "
\n",
- " \n",
- " 357 | \n",
- " 1.460200 | \n",
- "
\n",
- " \n",
- " 358 | \n",
- " 1.456100 | \n",
- "
\n",
- " \n",
- " 359 | \n",
- " 1.393600 | \n",
- "
\n",
- " \n",
- " 360 | \n",
- " 1.477500 | \n",
- "
\n",
- " \n",
- " 361 | \n",
- " 1.438100 | \n",
- "
\n",
- " \n",
- " 362 | \n",
- " 1.412900 | \n",
- "
\n",
- " \n",
- " 363 | \n",
- " 1.564800 | \n",
- "
\n",
- " \n",
- " 364 | \n",
- " 1.423000 | \n",
- "
\n",
- " \n",
- " 365 | \n",
- " 1.517000 | \n",
- "
\n",
- " \n",
- " 366 | \n",
- " 1.378000 | \n",
- "
\n",
- " \n",
- " 367 | \n",
- " 1.541300 | \n",
- "
\n",
- " \n",
- " 368 | \n",
- " 1.426400 | \n",
- "
\n",
- " \n",
- " 369 | \n",
- " 1.512400 | \n",
- "
\n",
- " \n",
- " 370 | \n",
- " 1.470800 | \n",
- "
\n",
- " \n",
- " 371 | \n",
- " 1.514200 | \n",
- "
\n",
- " \n",
- " 372 | \n",
- " 1.480300 | \n",
- "
\n",
- " \n",
- " 373 | \n",
- " 1.489100 | \n",
- "
\n",
- " \n",
- " 374 | \n",
- " 1.546200 | \n",
- "
\n",
- " \n",
- " 375 | \n",
- " 1.481200 | \n",
- "
\n",
- " \n",
- " 376 | \n",
- " 1.476000 | \n",
- "
\n",
- " \n",
- " 377 | \n",
- " 1.385400 | \n",
- "
\n",
- " \n",
- " 378 | \n",
- " 1.613200 | \n",
- "
\n",
- " \n",
- " 379 | \n",
- " 1.245500 | \n",
- "
\n",
- " \n",
- " 380 | \n",
- " 1.312100 | \n",
- "
\n",
- " \n",
- " 381 | \n",
- " 1.396700 | \n",
- "
\n",
- " \n",
- " 382 | \n",
- " 1.501400 | \n",
- "
\n",
- " \n",
- " 383 | \n",
- " 1.405100 | \n",
- "
\n",
- " \n",
- " 384 | \n",
- " 1.481700 | \n",
- "
\n",
- " \n",
- " 385 | \n",
- " 1.520400 | \n",
- "
\n",
- " \n",
- " 386 | \n",
- " 1.596300 | \n",
- "
\n",
- " \n",
- " 387 | \n",
- " 1.585500 | \n",
- "
\n",
- " \n",
- " 388 | \n",
- " 1.557700 | \n",
- "
\n",
- " \n",
- " 389 | \n",
- " 1.432000 | \n",
- "
\n",
- " \n",
- " 390 | \n",
- " 1.627200 | \n",
- "
\n",
- " \n",
- " 391 | \n",
- " 1.498900 | \n",
- "
\n",
- " \n",
- " 392 | \n",
- " 1.583700 | \n",
- "
\n",
- " \n",
- " 393 | \n",
- " 1.411800 | \n",
- "
\n",
- " \n",
- " 394 | \n",
- " 1.454600 | \n",
- "
\n",
- " \n",
- " 395 | \n",
- " 1.532200 | \n",
- "
\n",
- " \n",
- " 396 | \n",
- " 1.443000 | \n",
- "
\n",
- " \n",
- " 397 | \n",
- " 1.358000 | \n",
- "
\n",
- " \n",
- " 398 | \n",
- " 1.400200 | \n",
- "
\n",
- " \n",
- " 399 | \n",
- " 1.493300 | \n",
- "
\n",
- " \n",
- " 400 | \n",
- " 1.387900 | \n",
- "
\n",
- " \n",
- " 401 | \n",
- " 1.430900 | \n",
- "
\n",
- " \n",
- " 402 | \n",
- " 1.485400 | \n",
- "
\n",
- " \n",
- " 403 | \n",
- " 1.757100 | \n",
- "
\n",
- " \n",
- " 404 | \n",
- " 1.606100 | \n",
- "
\n",
- " \n",
- " 405 | \n",
- " 1.570100 | \n",
- "
\n",
- " \n",
- " 406 | \n",
- " 1.600700 | \n",
- "
\n",
- " \n",
- " 407 | \n",
- " 1.489300 | \n",
- "
\n",
- " \n",
- " 408 | \n",
- " 1.570900 | \n",
- "
\n",
- " \n",
- " 409 | \n",
- " 1.442300 | \n",
- "
\n",
- " \n",
- " 410 | \n",
- " 1.504900 | \n",
- "
\n",
- " \n",
- " 411 | \n",
- " 1.406900 | \n",
- "
\n",
- " \n",
- " 412 | \n",
- " 1.600600 | \n",
- "
\n",
- " \n",
- " 413 | \n",
- " 1.362500 | \n",
- "
\n",
- " \n",
- " 414 | \n",
- " 1.527700 | \n",
- "
\n",
- " \n",
- " 415 | \n",
- " 1.509400 | \n",
- "
\n",
- " \n",
- " 416 | \n",
- " 1.619800 | \n",
- "
\n",
- " \n",
- " 417 | \n",
- " 1.367200 | \n",
- "
\n",
- " \n",
- " 418 | \n",
- " 1.440800 | \n",
- "
\n",
- " \n",
- " 419 | \n",
- " 1.523200 | \n",
- "
\n",
- " \n",
- " 420 | \n",
- " 1.507500 | \n",
- "
\n",
- " \n",
- " 421 | \n",
- " 1.473100 | \n",
- "
\n",
- " \n",
- " 422 | \n",
- " 1.406900 | \n",
- "
\n",
- " \n",
- " 423 | \n",
- " 1.417000 | \n",
- "
\n",
- " \n",
- " 424 | \n",
- " 1.462700 | \n",
- "
\n",
- " \n",
- " 425 | \n",
- " 1.536800 | \n",
- "
\n",
- " \n",
- " 426 | \n",
- " 1.545300 | \n",
- "
\n",
- " \n",
- " 427 | \n",
- " 1.457400 | \n",
- "
\n",
- " \n",
- " 428 | \n",
- " 1.471200 | \n",
- "
\n",
- " \n",
- " 429 | \n",
- " 1.470500 | \n",
- "
\n",
- " \n",
- " 430 | \n",
- " 1.550000 | \n",
- "
\n",
- " \n",
- " 431 | \n",
- " 1.517700 | \n",
- "
\n",
- " \n",
- " 432 | \n",
- " 1.552500 | \n",
- "
\n",
- " \n",
- " 433 | \n",
- " 1.564900 | \n",
- "
\n",
- " \n",
- " 434 | \n",
- " 1.662400 | \n",
- "
\n",
- " \n",
- " 435 | \n",
- " 1.484900 | \n",
- "
\n",
- " \n",
- " 436 | \n",
- " 1.381200 | \n",
- "
\n",
- " \n",
- " 437 | \n",
- " 1.505900 | \n",
- "
\n",
- " \n",
- " 438 | \n",
- " 1.439100 | \n",
- "
\n",
- " \n",
- " 439 | \n",
- " 1.343900 | \n",
- "
\n",
- " \n",
- " 440 | \n",
- " 1.508700 | \n",
- "
\n",
- " \n",
- " 441 | \n",
- " 1.525400 | \n",
- "
\n",
- " \n",
- " 442 | \n",
- " 1.434000 | \n",
- "
\n",
- " \n",
- " 443 | \n",
- " 1.470400 | \n",
- "
\n",
- " \n",
- " 444 | \n",
- " 1.544200 | \n",
- "
\n",
- " \n",
- " 445 | \n",
- " 1.380300 | \n",
- "
\n",
- " \n",
- " 446 | \n",
- " 1.475500 | \n",
- "
\n",
- " \n",
- " 447 | \n",
- " 1.653600 | \n",
- "
\n",
- " \n",
- " 448 | \n",
- " 1.636300 | \n",
- "
\n",
- " \n",
- " 449 | \n",
- " 1.525200 | \n",
- "
\n",
- " \n",
- " 450 | \n",
- " 1.500500 | \n",
- "
\n",
- " \n",
- " 451 | \n",
- " 1.438000 | \n",
- "
\n",
- " \n",
- " 452 | \n",
- " 1.488800 | \n",
- "
\n",
- " \n",
- " 453 | \n",
- " 1.396300 | \n",
- "
\n",
- " \n",
- " 454 | \n",
- " 1.440200 | \n",
- "
\n",
- " \n",
- " 455 | \n",
- " 1.482000 | \n",
- "
\n",
- " \n",
- " 456 | \n",
- " 1.461400 | \n",
- "
\n",
- " \n",
- " 457 | \n",
- " 1.471400 | \n",
- "
\n",
- " \n",
- " 458 | \n",
- " 1.315300 | \n",
- "
\n",
- " \n",
- " 459 | \n",
- " 1.587200 | \n",
- "
\n",
- " \n",
- " 460 | \n",
- " 1.452000 | \n",
- "
\n",
- " \n",
- " 461 | \n",
- " 1.718700 | \n",
- "
\n",
- " \n",
- " 462 | \n",
- " 1.414400 | \n",
- "
\n",
- " \n",
- " 463 | \n",
- " 1.514500 | \n",
- "
\n",
- " \n",
- " 464 | \n",
- " 1.492100 | \n",
- "
\n",
- " \n",
- " 465 | \n",
- " 1.581400 | \n",
- "
\n",
- " \n",
- " 466 | \n",
- " 1.425000 | \n",
- "
\n",
- " \n",
- " 467 | \n",
- " 1.476900 | \n",
- "
\n",
- " \n",
- " 468 | \n",
- " 1.403700 | \n",
- "
\n",
- " \n",
- " 469 | \n",
- " 1.438700 | \n",
- "
\n",
- " \n",
- " 470 | \n",
- " 1.563300 | \n",
- "
\n",
- " \n",
- " 471 | \n",
- " 1.475600 | \n",
- "
\n",
- " \n",
- " 472 | \n",
- " 1.610700 | \n",
- "
\n",
- " \n",
- " 473 | \n",
- " 1.348700 | \n",
- "
\n",
- " \n",
- " 474 | \n",
- " 1.470000 | \n",
- "
\n",
- " \n",
- " 475 | \n",
- " 1.615400 | \n",
- "
\n",
- " \n",
- " 476 | \n",
- " 1.446700 | \n",
- "
\n",
- " \n",
- " 477 | \n",
- " 1.394500 | \n",
- "
\n",
- " \n",
- " 478 | \n",
- " 1.470600 | \n",
- "
\n",
- " \n",
- " 479 | \n",
- " 1.397700 | \n",
- "
\n",
- " \n",
- " 480 | \n",
- " 1.377500 | \n",
- "
\n",
- " \n",
- " 481 | \n",
- " 1.504900 | \n",
- "
\n",
- " \n",
- " 482 | \n",
- " 1.485500 | \n",
- "
\n",
- " \n",
- " 483 | \n",
- " 1.461600 | \n",
- "
\n",
- " \n",
- " 484 | \n",
- " 1.520600 | \n",
- "
\n",
- " \n",
- " 485 | \n",
- " 1.532300 | \n",
- "
\n",
- " \n",
- " 486 | \n",
- " 1.627200 | \n",
- "
\n",
- " \n",
- " 487 | \n",
- " 1.509800 | \n",
- "
\n",
- " \n",
- " 488 | \n",
- " 1.387400 | \n",
- "
\n",
- " \n",
- " 489 | \n",
- " 1.438900 | \n",
- "
\n",
- " \n",
- " 490 | \n",
- " 1.440700 | \n",
- "
\n",
- " \n",
- " 491 | \n",
- " 1.527900 | \n",
- "
\n",
- " \n",
- " 492 | \n",
- " 1.478900 | \n",
- "
\n",
- " \n",
- " 493 | \n",
- " 1.461900 | \n",
- "
\n",
- " \n",
- " 494 | \n",
- " 1.624800 | \n",
- "
\n",
- " \n",
- " 495 | \n",
- " 1.521600 | \n",
- "
\n",
- " \n",
- " 496 | \n",
- " 1.406800 | \n",
- "
\n",
- " \n",
- " 497 | \n",
- " 1.480600 | \n",
- "
\n",
- " \n",
- " 498 | \n",
- " 1.602300 | \n",
- "
\n",
- " \n",
- " 499 | \n",
- " 1.590400 | \n",
- "
\n",
- " \n",
- " 500 | \n",
- " 1.622000 | \n",
- "
\n",
- " \n",
- " 501 | \n",
- " 1.582400 | \n",
- "
\n",
- " \n",
- " 502 | \n",
- " 1.548000 | \n",
- "
\n",
- " \n",
- " 503 | \n",
- " 1.439800 | \n",
- "
\n",
- " \n",
- " 504 | \n",
- " 1.406300 | \n",
- "
\n",
- " \n",
- " 505 | \n",
- " 1.499700 | \n",
- "
\n",
- " \n",
- " 506 | \n",
- " 1.389400 | \n",
- "
\n",
- " \n",
- " 507 | \n",
- " 1.591000 | \n",
- "
\n",
- " \n",
- " 508 | \n",
- " 1.453000 | \n",
- "
\n",
- " \n",
- " 509 | \n",
- " 1.532200 | \n",
- "
\n",
- " \n",
- " 510 | \n",
- " 1.482900 | \n",
- "
\n",
- " \n",
- " 511 | \n",
- " 1.428800 | \n",
- "
\n",
- " \n",
- " 512 | \n",
- " 1.575800 | \n",
- "
\n",
- " \n",
- " 513 | \n",
- " 1.460300 | \n",
- "
\n",
- " \n",
- " 514 | \n",
- " 1.530200 | \n",
- "
\n",
- " \n",
- " 515 | \n",
- " 1.447100 | \n",
- "
\n",
- " \n",
- " 516 | \n",
- " 1.621300 | \n",
- "
\n",
- " \n",
- " 517 | \n",
- " 1.525500 | \n",
- "
\n",
- " \n",
- " 518 | \n",
- " 1.528700 | \n",
- "
\n",
- " \n",
- " 519 | \n",
- " 1.466200 | \n",
- "
\n",
- " \n",
- " 520 | \n",
- " 1.488700 | \n",
- "
\n",
- " \n",
- " 521 | \n",
- " 1.449400 | \n",
- "
\n",
- " \n",
- " 522 | \n",
- " 1.537600 | \n",
- "
\n",
- " \n",
- " 523 | \n",
- " 1.398400 | \n",
- "
\n",
- " \n",
- " 524 | \n",
- " 1.316700 | \n",
- "
\n",
- " \n",
- " 525 | \n",
- " 1.386100 | \n",
- "
\n",
- " \n",
- " 526 | \n",
- " 1.603900 | \n",
- "
\n",
- " \n",
- " 527 | \n",
- " 1.353800 | \n",
- "
\n",
- " \n",
- " 528 | \n",
- " 1.306700 | \n",
- "
\n",
- " \n",
- " 529 | \n",
- " 1.401600 | \n",
- "
\n",
- " \n",
- " 530 | \n",
- " 1.380400 | \n",
- "
\n",
- " \n",
- " 531 | \n",
- " 1.394900 | \n",
- "
\n",
- " \n",
- " 532 | \n",
- " 1.498300 | \n",
- "
\n",
- " \n",
- " 533 | \n",
- " 1.462200 | \n",
- "
\n",
- " \n",
- " 534 | \n",
- " 1.458100 | \n",
- "
\n",
- " \n",
- " 535 | \n",
- " 1.515000 | \n",
- "
\n",
- " \n",
- " 536 | \n",
- " 1.483900 | \n",
- "
\n",
- " \n",
- " 537 | \n",
- " 1.508600 | \n",
- "
\n",
- " \n",
- " 538 | \n",
- " 1.612800 | \n",
- "
\n",
- " \n",
- " 539 | \n",
- " 1.443400 | \n",
- "
\n",
- " \n",
- " 540 | \n",
- " 1.455600 | \n",
- "
\n",
- " \n",
- " 541 | \n",
- " 1.568900 | \n",
- "
\n",
- " \n",
- " 542 | \n",
- " 1.547600 | \n",
- "
\n",
- " \n",
- " 543 | \n",
- " 1.432400 | \n",
- "
\n",
- " \n",
- " 544 | \n",
- " 1.583800 | \n",
- "
\n",
- " \n",
- " 545 | \n",
- " 1.365600 | \n",
- "
\n",
- " \n",
- " 546 | \n",
- " 1.596500 | \n",
- "
\n",
- " \n",
- " 547 | \n",
- " 1.450600 | \n",
- "
\n",
- " \n",
- " 548 | \n",
- " 1.485400 | \n",
- "
\n",
- " \n",
- " 549 | \n",
- " 1.457700 | \n",
- "
\n",
- " \n",
- " 550 | \n",
- " 1.390200 | \n",
- "
\n",
- " \n",
- " 551 | \n",
- " 1.399700 | \n",
- "
\n",
- " \n",
- " 552 | \n",
- " 1.417600 | \n",
- "
\n",
- " \n",
- " 553 | \n",
- " 1.579800 | \n",
- "
\n",
- " \n",
- " 554 | \n",
- " 1.472400 | \n",
- "
\n",
- " \n",
- " 555 | \n",
- " 1.386100 | \n",
- "
\n",
- " \n",
- " 556 | \n",
- " 1.439000 | \n",
- "
\n",
- " \n",
- " 557 | \n",
- " 1.418300 | \n",
- "
\n",
- " \n",
- " 558 | \n",
- " 1.444300 | \n",
- "
\n",
- " \n",
- " 559 | \n",
- " 1.516500 | \n",
- "
\n",
- " \n",
- " 560 | \n",
- " 1.550100 | \n",
- "
\n",
- " \n",
- " 561 | \n",
- " 1.410800 | \n",
- "
\n",
- " \n",
- " 562 | \n",
- " 1.560600 | \n",
- "
\n",
- " \n",
- " 563 | \n",
- " 1.523800 | \n",
- "
\n",
- " \n",
- " 564 | \n",
- " 1.489200 | \n",
- "
\n",
- " \n",
- " 565 | \n",
- " 1.423400 | \n",
- "
\n",
- " \n",
- " 566 | \n",
- " 1.436900 | \n",
- "
\n",
- " \n",
- " 567 | \n",
- " 1.546700 | \n",
- "
\n",
- " \n",
- " 568 | \n",
- " 1.393200 | \n",
- "
\n",
- " \n",
- " 569 | \n",
- " 1.556600 | \n",
- "
\n",
- " \n",
- " 570 | \n",
- " 1.446700 | \n",
- "
\n",
- " \n",
- " 571 | \n",
- " 1.380600 | \n",
- "
\n",
- " \n",
- " 572 | \n",
- " 1.340500 | \n",
- "
\n",
- " \n",
- " 573 | \n",
- " 1.477000 | \n",
- "
\n",
- " \n",
- " 574 | \n",
- " 1.367000 | \n",
- "
\n",
- " \n",
- " 575 | \n",
- " 1.643500 | \n",
- "
\n",
- " \n",
- " 576 | \n",
- " 1.448600 | \n",
- "
\n",
- " \n",
- " 577 | \n",
- " 1.419600 | \n",
- "
\n",
- " \n",
- " 578 | \n",
- " 1.568400 | \n",
- "
\n",
- " \n",
- " 579 | \n",
- " 1.473300 | \n",
- "
\n",
- " \n",
- " 580 | \n",
- " 1.650400 | \n",
- "
\n",
- " \n",
- " 581 | \n",
- " 1.572000 | \n",
- "
\n",
- " \n",
- " 582 | \n",
- " 1.499300 | \n",
- "
\n",
- " \n",
- " 583 | \n",
- " 1.613200 | \n",
- "
\n",
- " \n",
- " 584 | \n",
- " 1.566500 | \n",
- "
\n",
- " \n",
- " 585 | \n",
- " 1.477800 | \n",
- "
\n",
- " \n",
- " 586 | \n",
- " 1.507300 | \n",
- "
\n",
- " \n",
- " 587 | \n",
- " 1.374800 | \n",
- "
\n",
- " \n",
- " 588 | \n",
- " 1.480100 | \n",
- "
\n",
- " \n",
- " 589 | \n",
- " 1.357000 | \n",
- "
\n",
- " \n",
- " 590 | \n",
- " 1.328300 | \n",
- "
\n",
- " \n",
- " 591 | \n",
- " 1.343400 | \n",
- "
\n",
- " \n",
- " 592 | \n",
- " 1.470600 | \n",
- "
\n",
- " \n",
- " 593 | \n",
- " 1.524700 | \n",
- "
\n",
- " \n",
- " 594 | \n",
- " 1.420600 | \n",
- "
\n",
- " \n",
- " 595 | \n",
- " 1.398400 | \n",
- "
\n",
- " \n",
- " 596 | \n",
- " 1.498600 | \n",
- "
\n",
- " \n",
- " 597 | \n",
- " 1.530700 | \n",
- "
\n",
- " \n",
- " 598 | \n",
- " 1.520700 | \n",
- "
\n",
- " \n",
- " 599 | \n",
- " 1.579800 | \n",
- "
\n",
- " \n",
- " 600 | \n",
- " 1.559300 | \n",
- "
\n",
- " \n",
- " 601 | \n",
- " 1.400800 | \n",
- "
\n",
- " \n",
- " 602 | \n",
- " 1.489000 | \n",
- "
\n",
- " \n",
- " 603 | \n",
- " 1.532900 | \n",
- "
\n",
- " \n",
- " 604 | \n",
- " 1.507300 | \n",
- "
\n",
- " \n",
- " 605 | \n",
- " 1.447400 | \n",
- "
\n",
- " \n",
- " 606 | \n",
- " 1.527100 | \n",
- "
\n",
- " \n",
- " 607 | \n",
- " 1.433700 | \n",
- "
\n",
- " \n",
- " 608 | \n",
- " 1.533300 | \n",
- "
\n",
- " \n",
- " 609 | \n",
- " 1.469300 | \n",
- "
\n",
- " \n",
- " 610 | \n",
- " 1.504100 | \n",
- "
\n",
- " \n",
- " 611 | \n",
- " 1.416300 | \n",
- "
\n",
- " \n",
- " 612 | \n",
- " 1.601600 | \n",
- "
\n",
- " \n",
- " 613 | \n",
- " 1.526500 | \n",
- "
\n",
- " \n",
- " 614 | \n",
- " 1.491200 | \n",
- "
\n",
- " \n",
- " 615 | \n",
- " 1.605900 | \n",
- "
\n",
- " \n",
- " 616 | \n",
- " 1.561700 | \n",
- "
\n",
- " \n",
- " 617 | \n",
- " 1.384500 | \n",
- "
\n",
- " \n",
- " 618 | \n",
- " 1.561900 | \n",
- "
\n",
- " \n",
- " 619 | \n",
- " 1.416700 | \n",
- "
\n",
- " \n",
- " 620 | \n",
- " 1.484600 | \n",
- "
\n",
- " \n",
- " 621 | \n",
- " 1.558600 | \n",
- "
\n",
- " \n",
- " 622 | \n",
- " 1.449400 | \n",
- "
\n",
- " \n",
- " 623 | \n",
- " 1.477200 | \n",
- "
\n",
- " \n",
- " 624 | \n",
- " 1.557600 | \n",
- "
\n",
- " \n",
- " 625 | \n",
- " 1.550600 | \n",
- "
\n",
- " \n",
- " 626 | \n",
- " 1.575000 | \n",
- "
\n",
- " \n",
- " 627 | \n",
- " 1.376900 | \n",
- "
\n",
- " \n",
- " 628 | \n",
- " 1.557200 | \n",
- "
\n",
- " \n",
- " 629 | \n",
- " 1.466200 | \n",
- "
\n",
- " \n",
- " 630 | \n",
- " 1.390700 | \n",
- "
\n",
- " \n",
- " 631 | \n",
- " 1.441400 | \n",
- "
\n",
- " \n",
- " 632 | \n",
- " 1.526600 | \n",
- "
\n",
- " \n",
- " 633 | \n",
- " 1.455400 | \n",
- "
\n",
- " \n",
- " 634 | \n",
- " 1.310500 | \n",
- "
\n",
- " \n",
- " 635 | \n",
- " 1.445300 | \n",
- "
\n",
- " \n",
- " 636 | \n",
- " 1.431300 | \n",
- "
\n",
- " \n",
- " 637 | \n",
- " 1.596800 | \n",
- "
\n",
- " \n",
- " 638 | \n",
- " 1.520600 | \n",
- "
\n",
- " \n",
- " 639 | \n",
- " 1.554900 | \n",
- "
\n",
- " \n",
- " 640 | \n",
- " 1.456100 | \n",
- "
\n",
- " \n",
- " 641 | \n",
- " 1.566200 | \n",
- "
\n",
- " \n",
- " 642 | \n",
- " 1.507100 | \n",
- "
\n",
- " \n",
- " 643 | \n",
- " 1.522700 | \n",
- "
\n",
- " \n",
- " 644 | \n",
- " 1.482700 | \n",
- "
\n",
- " \n",
- " 645 | \n",
- " 1.525900 | \n",
- "
\n",
- " \n",
- " 646 | \n",
- " 1.327800 | \n",
- "
\n",
- " \n",
- " 647 | \n",
- " 1.441400 | \n",
- "
\n",
- " \n",
- " 648 | \n",
- " 1.412400 | \n",
- "
\n",
- " \n",
- " 649 | \n",
- " 1.338100 | \n",
- "
\n",
- " \n",
- " 650 | \n",
- " 1.466900 | \n",
- "
\n",
- " \n",
- " 651 | \n",
- " 1.592100 | \n",
- "
\n",
- " \n",
- " 652 | \n",
- " 1.473300 | \n",
- "
\n",
- " \n",
- " 653 | \n",
- " 1.526600 | \n",
- "
\n",
- " \n",
- " 654 | \n",
- " 1.484900 | \n",
- "
\n",
- " \n",
- " 655 | \n",
- " 1.537900 | \n",
- "
\n",
- " \n",
- " 656 | \n",
- " 1.368500 | \n",
- "
\n",
- " \n",
- " 657 | \n",
- " 1.332000 | \n",
- "
\n",
- " \n",
- " 658 | \n",
- " 1.545500 | \n",
- "
\n",
- " \n",
- " 659 | \n",
- " 1.425000 | \n",
- "
\n",
- " \n",
- " 660 | \n",
- " 1.487300 | \n",
- "
\n",
- " \n",
- " 661 | \n",
- " 1.499200 | \n",
- "
\n",
- " \n",
- " 662 | \n",
- " 1.461900 | \n",
- "
\n",
- " \n",
- " 663 | \n",
- " 1.495800 | \n",
- "
\n",
- " \n",
- " 664 | \n",
- " 1.432700 | \n",
- "
\n",
- " \n",
- " 665 | \n",
- " 1.480300 | \n",
- "
\n",
- " \n",
- " 666 | \n",
- " 1.452000 | \n",
- "
\n",
- " \n",
- " 667 | \n",
- " 1.516700 | \n",
- "
\n",
- " \n",
- " 668 | \n",
- " 1.465200 | \n",
- "
\n",
- " \n",
- " 669 | \n",
- " 1.455800 | \n",
- "
\n",
- " \n",
- " 670 | \n",
- " 1.402400 | \n",
- "
\n",
- " \n",
- " 671 | \n",
- " 1.377000 | \n",
- "
\n",
- " \n",
- " 672 | \n",
- " 1.540900 | \n",
- "
\n",
- " \n",
- " 673 | \n",
- " 1.436500 | \n",
- "
\n",
- " \n",
- " 674 | \n",
- " 1.597800 | \n",
- "
\n",
- " \n",
- " 675 | \n",
- " 1.432400 | \n",
- "
\n",
- " \n",
- " 676 | \n",
- " 1.417700 | \n",
- "
\n",
- " \n",
- " 677 | \n",
- " 1.305100 | \n",
- "
\n",
- " \n",
- " 678 | \n",
- " 1.543400 | \n",
- "
\n",
- " \n",
- " 679 | \n",
- " 1.629200 | \n",
- "
\n",
- " \n",
- " 680 | \n",
- " 1.404100 | \n",
- "
\n",
- " \n",
- " 681 | \n",
- " 1.544200 | \n",
- "
\n",
- " \n",
- " 682 | \n",
- " 1.552600 | \n",
- "
\n",
- " \n",
- " 683 | \n",
- " 1.422000 | \n",
- "
\n",
- " \n",
- " 684 | \n",
- " 1.477900 | \n",
- "
\n",
- " \n",
- " 685 | \n",
- " 1.293200 | \n",
- "
\n",
- " \n",
- " 686 | \n",
- " 1.411200 | \n",
- "
\n",
- " \n",
- " 687 | \n",
- " 1.480900 | \n",
- "
\n",
- " \n",
- " 688 | \n",
- " 1.486800 | \n",
- "
\n",
- " \n",
- " 689 | \n",
- " 1.316400 | \n",
- "
\n",
- " \n",
- " 690 | \n",
- " 1.466900 | \n",
- "
\n",
- " \n",
- " 691 | \n",
- " 1.376700 | \n",
- "
\n",
- " \n",
- " 692 | \n",
- " 1.440000 | \n",
- "
\n",
- " \n",
- " 693 | \n",
- " 1.594300 | \n",
- "
\n",
- " \n",
- " 694 | \n",
- " 1.482100 | \n",
- "
\n",
- " \n",
- " 695 | \n",
- " 1.537500 | \n",
- "
\n",
- " \n",
- " 696 | \n",
- " 1.543200 | \n",
- "
\n",
- " \n",
- " 697 | \n",
- " 1.458800 | \n",
- "
\n",
- " \n",
- " 698 | \n",
- " 1.493900 | \n",
- "
\n",
- " \n",
- " 699 | \n",
- " 1.517100 | \n",
- "
\n",
- " \n",
- " 700 | \n",
- " 1.408600 | \n",
- "
\n",
- " \n",
- " 701 | \n",
- " 1.488700 | \n",
- "
\n",
- " \n",
- " 702 | \n",
- " 1.363300 | \n",
- "
\n",
- " \n",
- " 703 | \n",
- " 1.300900 | \n",
- "
\n",
- " \n",
- " 704 | \n",
- " 1.488000 | \n",
- "
\n",
- " \n",
- " 705 | \n",
- " 1.377400 | \n",
- "
\n",
- " \n",
- " 706 | \n",
- " 1.526500 | \n",
- "
\n",
- " \n",
- " 707 | \n",
- " 1.392900 | \n",
- "
\n",
- " \n",
- " 708 | \n",
- " 1.536000 | \n",
- "
\n",
- " \n",
- " 709 | \n",
- " 1.349900 | \n",
- "
\n",
- " \n",
- " 710 | \n",
- " 1.447300 | \n",
- "
\n",
- " \n",
- " 711 | \n",
- " 1.349600 | \n",
- "
\n",
- " \n",
- " 712 | \n",
- " 1.548100 | \n",
- "
\n",
- " \n",
- " 713 | \n",
- " 1.441000 | \n",
- "
\n",
- " \n",
- " 714 | \n",
- " 1.418200 | \n",
- "
\n",
- " \n",
- " 715 | \n",
- " 1.434100 | \n",
- "
\n",
- " \n",
- " 716 | \n",
- " 1.387700 | \n",
- "
\n",
- " \n",
- " 717 | \n",
- " 1.293200 | \n",
- "
\n",
- " \n",
- " 718 | \n",
- " 1.396800 | \n",
- "
\n",
- " \n",
- " 719 | \n",
- " 1.430700 | \n",
- "
\n",
- " \n",
- " 720 | \n",
- " 1.363800 | \n",
- "
\n",
- " \n",
- " 721 | \n",
- " 1.471500 | \n",
- "
\n",
- " \n",
- " 722 | \n",
- " 1.502400 | \n",
- "
\n",
- " \n",
- " 723 | \n",
- " 1.394000 | \n",
- "
\n",
- " \n",
- " 724 | \n",
- " 1.339500 | \n",
- "
\n",
- " \n",
- " 725 | \n",
- " 1.478800 | \n",
- "
\n",
- " \n",
- " 726 | \n",
- " 1.554500 | \n",
- "
\n",
- " \n",
- " 727 | \n",
- " 1.355800 | \n",
- "
\n",
- " \n",
- " 728 | \n",
- " 1.422100 | \n",
- "
\n",
- " \n",
- " 729 | \n",
- " 1.487600 | \n",
- "
\n",
- " \n",
- " 730 | \n",
- " 1.425300 | \n",
- "
\n",
- " \n",
- " 731 | \n",
- " 1.429600 | \n",
- "
\n",
- " \n",
- " 732 | \n",
- " 1.440100 | \n",
- "
\n",
- " \n",
- " 733 | \n",
- " 1.484700 | \n",
- "
\n",
- " \n",
- " 734 | \n",
- " 1.588300 | \n",
- "
\n",
- " \n",
- " 735 | \n",
- " 1.428800 | \n",
- "
\n",
- " \n",
- " 736 | \n",
- " 1.510200 | \n",
- "
\n",
- " \n",
- " 737 | \n",
- " 1.418300 | \n",
- "
\n",
- " \n",
- " 738 | \n",
- " 1.461400 | \n",
- "
\n",
- " \n",
- " 739 | \n",
- " 1.455600 | \n",
- "
\n",
- " \n",
- " 740 | \n",
- " 1.377100 | \n",
- "
\n",
- " \n",
- " 741 | \n",
- " 1.382400 | \n",
- "
\n",
- " \n",
- " 742 | \n",
- " 1.520200 | \n",
- "
\n",
- " \n",
- " 743 | \n",
- " 1.383200 | \n",
- "
\n",
- " \n",
- " 744 | \n",
- " 1.494000 | \n",
- "
\n",
- " \n",
- " 745 | \n",
- " 1.567400 | \n",
- "
\n",
- " \n",
- " 746 | \n",
- " 1.437000 | \n",
- "
\n",
- " \n",
- " 747 | \n",
- " 1.458000 | \n",
- "
\n",
- " \n",
- " 748 | \n",
- " 1.483100 | \n",
- "
\n",
- " \n",
- " 749 | \n",
- " 1.473700 | \n",
- "
\n",
- " \n",
- " 750 | \n",
- " 1.644300 | \n",
- "
\n",
- " \n",
- " 751 | \n",
- " 1.348900 | \n",
- "
\n",
- " \n",
- " 752 | \n",
- " 1.442800 | \n",
- "
\n",
- " \n",
- " 753 | \n",
- " 1.616400 | \n",
- "
\n",
- " \n",
- " 754 | \n",
- " 1.459600 | \n",
- "
\n",
- " \n",
- " 755 | \n",
- " 1.478100 | \n",
- "
\n",
- " \n",
- " 756 | \n",
- " 1.469500 | \n",
- "
\n",
- " \n",
- " 757 | \n",
- " 1.510300 | \n",
- "
\n",
- " \n",
- " 758 | \n",
- " 1.402400 | \n",
- "
\n",
- " \n",
- " 759 | \n",
- " 1.477400 | \n",
- "
\n",
- " \n",
- " 760 | \n",
- " 1.597400 | \n",
- "
\n",
- " \n",
- " 761 | \n",
- " 1.470700 | \n",
- "
\n",
- " \n",
- " 762 | \n",
- " 1.586600 | \n",
- "
\n",
- " \n",
- " 763 | \n",
- " 1.316800 | \n",
- "
\n",
- " \n",
- " 764 | \n",
- " 1.298600 | \n",
- "
\n",
- " \n",
- " 765 | \n",
- " 1.482500 | \n",
- "
\n",
- " \n",
- " 766 | \n",
- " 1.544300 | \n",
- "
\n",
- " \n",
- " 767 | \n",
- " 1.396300 | \n",
- "
\n",
- " \n",
- " 768 | \n",
- " 1.321000 | \n",
- "
\n",
- " \n",
- " 769 | \n",
- " 1.424400 | \n",
- "
\n",
- " \n",
- " 770 | \n",
- " 1.449300 | \n",
- "
\n",
- " \n",
- " 771 | \n",
- " 1.479900 | \n",
- "
\n",
- " \n",
- " 772 | \n",
- " 1.451300 | \n",
- "
\n",
- " \n",
- " 773 | \n",
- " 1.567600 | \n",
- "
\n",
- " \n",
- " 774 | \n",
- " 1.257600 | \n",
- "
\n",
- " \n",
- " 775 | \n",
- " 1.649800 | \n",
- "
\n",
- " \n",
- " 776 | \n",
- " 1.516400 | \n",
- "
\n",
- " \n",
- " 777 | \n",
- " 1.461400 | \n",
- "
\n",
- " \n",
- " 778 | \n",
- " 1.494800 | \n",
- "
\n",
- " \n",
- " 779 | \n",
- " 1.621100 | \n",
- "
\n",
- " \n",
- " 780 | \n",
- " 1.571900 | \n",
- "
\n",
- " \n",
- " 781 | \n",
- " 1.331500 | \n",
- "
\n",
- " \n",
- " 782 | \n",
- " 1.575500 | \n",
- "
\n",
- " \n",
- " 783 | \n",
- " 1.439000 | \n",
- "
\n",
- " \n",
- " 784 | \n",
- " 1.347600 | \n",
- "
\n",
- " \n",
- " 785 | \n",
- " 1.522800 | \n",
- "
\n",
- " \n",
- " 786 | \n",
- " 1.584100 | \n",
- "
\n",
- " \n",
- " 787 | \n",
- " 1.419300 | \n",
- "
\n",
- " \n",
- " 788 | \n",
- " 1.385400 | \n",
- "
\n",
- " \n",
- " 789 | \n",
- " 1.435000 | \n",
- "
\n",
- " \n",
- " 790 | \n",
- " 1.483800 | \n",
- "
\n",
- " \n",
- " 791 | \n",
- " 1.452200 | \n",
- "
\n",
- " \n",
- " 792 | \n",
- " 1.587100 | \n",
- "
\n",
- " \n",
- " 793 | \n",
- " 1.495600 | \n",
- "
\n",
- " \n",
- " 794 | \n",
- " 1.485100 | \n",
- "
\n",
- " \n",
- " 795 | \n",
- " 1.444100 | \n",
- "
\n",
- " \n",
- " 796 | \n",
- " 1.534800 | \n",
- "
\n",
- " \n",
- " 797 | \n",
- " 1.436100 | \n",
- "
\n",
- " \n",
- " 798 | \n",
- " 1.366400 | \n",
- "
\n",
- " \n",
- " 799 | \n",
- " 1.603100 | \n",
- "
\n",
- " \n",
- " 800 | \n",
- " 1.505600 | \n",
- "
\n",
- " \n",
- " 801 | \n",
- " 1.484300 | \n",
- "
\n",
- " \n",
- " 802 | \n",
- " 1.353700 | \n",
- "
\n",
- " \n",
- " 803 | \n",
- " 1.462300 | \n",
- "
\n",
- " \n",
- " 804 | \n",
- " 1.497700 | \n",
- "
\n",
- " \n",
- " 805 | \n",
- " 1.448300 | \n",
- "
\n",
- " \n",
- " 806 | \n",
- " 1.388900 | \n",
- "
\n",
- " \n",
- " 807 | \n",
- " 1.440900 | \n",
- "
\n",
- " \n",
- " 808 | \n",
- " 1.437100 | \n",
- "
\n",
- " \n",
- " 809 | \n",
- " 1.527300 | \n",
- "
\n",
- " \n",
- " 810 | \n",
- " 1.497200 | \n",
- "
\n",
- " \n",
- " 811 | \n",
- " 1.482200 | \n",
- "
\n",
- " \n",
- " 812 | \n",
- " 1.361200 | \n",
- "
\n",
- " \n",
- " 813 | \n",
- " 1.435700 | \n",
- "
\n",
- " \n",
- " 814 | \n",
- " 1.463700 | \n",
- "
\n",
- " \n",
- " 815 | \n",
- " 1.478700 | \n",
- "
\n",
- " \n",
- " 816 | \n",
- " 1.523100 | \n",
- "
\n",
- " \n",
- " 817 | \n",
- " 1.560500 | \n",
- "
\n",
- " \n",
- " 818 | \n",
- " 1.457100 | \n",
- "
\n",
- " \n",
- " 819 | \n",
- " 1.477400 | \n",
- "
\n",
- " \n",
- " 820 | \n",
- " 1.558200 | \n",
- "
\n",
- " \n",
- " 821 | \n",
- " 1.424400 | \n",
- "
\n",
- " \n",
- " 822 | \n",
- " 1.578200 | \n",
- "
\n",
- " \n",
- " 823 | \n",
- " 1.465400 | \n",
- "
\n",
- " \n",
- " 824 | \n",
- " 1.343500 | \n",
- "
\n",
- " \n",
- " 825 | \n",
- " 1.405000 | \n",
- "
\n",
- " \n",
- " 826 | \n",
- " 1.476500 | \n",
- "
\n",
- " \n",
- " 827 | \n",
- " 1.458900 | \n",
- "
\n",
- " \n",
- " 828 | \n",
- " 1.458300 | \n",
- "
\n",
- " \n",
- " 829 | \n",
- " 1.497900 | \n",
- "
\n",
- " \n",
- " 830 | \n",
- " 1.436900 | \n",
- "
\n",
- " \n",
- " 831 | \n",
- " 1.575000 | \n",
- "
\n",
- " \n",
- " 832 | \n",
- " 1.531200 | \n",
- "
\n",
- " \n",
- " 833 | \n",
- " 1.490700 | \n",
- "
\n",
- " \n",
- " 834 | \n",
- " 1.556900 | \n",
- "
\n",
- " \n",
- " 835 | \n",
- " 1.620300 | \n",
- "
\n",
- " \n",
- " 836 | \n",
- " 1.563400 | \n",
- "
\n",
- " \n",
- " 837 | \n",
- " 1.436300 | \n",
- "
\n",
- " \n",
- " 838 | \n",
- " 1.465600 | \n",
- "
\n",
- " \n",
- " 839 | \n",
- " 1.412700 | \n",
- "
\n",
- " \n",
- " 840 | \n",
- " 1.487900 | \n",
- "
\n",
- " \n",
- " 841 | \n",
- " 1.506800 | \n",
- "
\n",
- " \n",
- " 842 | \n",
- " 1.427100 | \n",
- "
\n",
- " \n",
- " 843 | \n",
- " 1.376300 | \n",
- "
\n",
- " \n",
- " 844 | \n",
- " 1.500300 | \n",
- "
\n",
- " \n",
- " 845 | \n",
- " 1.573100 | \n",
- "
\n",
- " \n",
- " 846 | \n",
- " 1.443300 | \n",
- "
\n",
- " \n",
- " 847 | \n",
- " 1.476400 | \n",
- "
\n",
- " \n",
- " 848 | \n",
- " 1.497100 | \n",
- "
\n",
- " \n",
- " 849 | \n",
- " 1.310600 | \n",
- "
\n",
- " \n",
- " 850 | \n",
- " 1.404200 | \n",
- "
\n",
- " \n",
- " 851 | \n",
- " 1.575800 | \n",
- "
\n",
- " \n",
- " 852 | \n",
- " 1.506100 | \n",
- "
\n",
- " \n",
- " 853 | \n",
- " 1.424900 | \n",
- "
\n",
- " \n",
- " 854 | \n",
- " 1.522100 | \n",
- "
\n",
- " \n",
- " 855 | \n",
- " 1.376900 | \n",
- "
\n",
- " \n",
- " 856 | \n",
- " 1.476000 | \n",
- "
\n",
- " \n",
- " 857 | \n",
- " 1.339700 | \n",
- "
\n",
- " \n",
- " 858 | \n",
- " 1.440300 | \n",
- "
\n",
- " \n",
- " 859 | \n",
- " 1.518100 | \n",
- "
\n",
- " \n",
- " 860 | \n",
- " 1.411400 | \n",
- "
\n",
- " \n",
- " 861 | \n",
- " 1.394900 | \n",
- "
\n",
- " \n",
- " 862 | \n",
- " 1.522100 | \n",
- "
\n",
- " \n",
- " 863 | \n",
- " 1.436000 | \n",
- "
\n",
- " \n",
- " 864 | \n",
- " 1.585100 | \n",
- "
\n",
- " \n",
- " 865 | \n",
- " 1.490100 | \n",
- "
\n",
- " \n",
- " 866 | \n",
- " 1.472400 | \n",
- "
\n",
- " \n",
- " 867 | \n",
- " 1.299200 | \n",
- "
\n",
- " \n",
- " 868 | \n",
- " 1.422200 | \n",
- "
\n",
- " \n",
- " 869 | \n",
- " 1.487800 | \n",
- "
\n",
- " \n",
- " 870 | \n",
- " 1.623900 | \n",
- "
\n",
- " \n",
- " 871 | \n",
- " 1.605000 | \n",
- "
\n",
- " \n",
- " 872 | \n",
- " 1.580400 | \n",
- "
\n",
- " \n",
- " 873 | \n",
- " 1.275400 | \n",
- "
\n",
- " \n",
- " 874 | \n",
- " 1.452700 | \n",
- "
\n",
- " \n",
- " 875 | \n",
- " 1.400200 | \n",
- "
\n",
- " \n",
- " 876 | \n",
- " 1.473500 | \n",
- "
\n",
- " \n",
- " 877 | \n",
- " 1.359500 | \n",
- "
\n",
- " \n",
- " 878 | \n",
- " 1.495800 | \n",
- "
\n",
- " \n",
- " 879 | \n",
- " 1.451500 | \n",
- "
\n",
- " \n",
- " 880 | \n",
- " 1.420400 | \n",
- "
\n",
- " \n",
- " 881 | \n",
- " 1.528400 | \n",
- "
\n",
- " \n",
- " 882 | \n",
- " 1.397800 | \n",
- "
\n",
- " \n",
- " 883 | \n",
- " 1.597900 | \n",
- "
\n",
- " \n",
- " 884 | \n",
- " 1.509000 | \n",
- "
\n",
- " \n",
- " 885 | \n",
- " 1.568300 | \n",
- "
\n",
- " \n",
- " 886 | \n",
- " 1.473000 | \n",
- "
\n",
- " \n",
- " 887 | \n",
- " 1.553900 | \n",
- "
\n",
- " \n",
- " 888 | \n",
- " 1.588500 | \n",
- "
\n",
- " \n",
- " 889 | \n",
- " 1.442500 | \n",
- "
\n",
- " \n",
- " 890 | \n",
- " 1.415100 | \n",
- "
\n",
- " \n",
- " 891 | \n",
- " 1.357400 | \n",
- "
\n",
- " \n",
- " 892 | \n",
- " 1.311900 | \n",
- "
\n",
- " \n",
- " 893 | \n",
- " 1.405100 | \n",
- "
\n",
- " \n",
- " 894 | \n",
- " 1.464700 | \n",
- "
\n",
- " \n",
- " 895 | \n",
- " 1.495000 | \n",
- "
\n",
- " \n",
- " 896 | \n",
- " 1.488900 | \n",
- "
\n",
- " \n",
- " 897 | \n",
- " 1.584100 | \n",
- "
\n",
- " \n",
- " 898 | \n",
- " 1.444000 | \n",
- "
\n",
- " \n",
- " 899 | \n",
- " 1.414800 | \n",
- "
\n",
- " \n",
- " 900 | \n",
- " 1.465800 | \n",
- "
\n",
- " \n",
- " 901 | \n",
- " 1.523400 | \n",
- "
\n",
- " \n",
- " 902 | \n",
- " 1.518300 | \n",
- "
\n",
- " \n",
- " 903 | \n",
- " 1.488800 | \n",
- "
\n",
- " \n",
- " 904 | \n",
- " 1.305900 | \n",
- "
\n",
- " \n",
- " 905 | \n",
- " 1.549500 | \n",
- "
\n",
- " \n",
- " 906 | \n",
- " 1.580100 | \n",
- "
\n",
- " \n",
- " 907 | \n",
- " 1.603000 | \n",
- "
\n",
- " \n",
- " 908 | \n",
- " 1.450600 | \n",
- "
\n",
- " \n",
- " 909 | \n",
- " 1.503000 | \n",
- "
\n",
- " \n",
- " 910 | \n",
- " 1.450300 | \n",
- "
\n",
- " \n",
- " 911 | \n",
- " 1.382200 | \n",
- "
\n",
- " \n",
- " 912 | \n",
- " 1.439700 | \n",
- "
\n",
- " \n",
- " 913 | \n",
- " 1.561000 | \n",
- "
\n",
- " \n",
- " 914 | \n",
- " 1.443600 | \n",
- "
\n",
- " \n",
- " 915 | \n",
- " 1.487600 | \n",
- "
\n",
- " \n",
- " 916 | \n",
- " 1.322300 | \n",
- "
\n",
- " \n",
- " 917 | \n",
- " 1.318500 | \n",
- "
\n",
- " \n",
- " 918 | \n",
- " 1.387300 | \n",
- "
\n",
- " \n",
- " 919 | \n",
- " 1.441600 | \n",
- "
\n",
- " \n",
- " 920 | \n",
- " 1.519100 | \n",
- "
\n",
- " \n",
- " 921 | \n",
- " 1.453000 | \n",
- "
\n",
- " \n",
- " 922 | \n",
- " 1.407000 | \n",
- "
\n",
- " \n",
- " 923 | \n",
- " 1.422700 | \n",
- "
\n",
- " \n",
- " 924 | \n",
- " 1.352900 | \n",
- "
\n",
- " \n",
- " 925 | \n",
- " 1.494900 | \n",
- "
\n",
- " \n",
- " 926 | \n",
- " 1.434600 | \n",
- "
\n",
- " \n",
- " 927 | \n",
- " 1.465200 | \n",
- "
\n",
- " \n",
- " 928 | \n",
- " 1.417500 | \n",
- "
\n",
- " \n",
- " 929 | \n",
- " 1.342500 | \n",
- "
\n",
- " \n",
- " 930 | \n",
- " 1.547600 | \n",
- "
\n",
- " \n",
- " 931 | \n",
- " 1.545800 | \n",
- "
\n",
- " \n",
- " 932 | \n",
- " 1.496000 | \n",
- "
\n",
- " \n",
- " 933 | \n",
- " 1.398800 | \n",
- "
\n",
- " \n",
- " 934 | \n",
- " 1.327900 | \n",
- "
\n",
- " \n",
- " 935 | \n",
- " 1.587400 | \n",
- "
\n",
- " \n",
- " 936 | \n",
- " 1.347300 | \n",
- "
\n",
- " \n",
- " 937 | \n",
- " 1.543000 | \n",
- "
\n",
- " \n",
- " 938 | \n",
- " 1.418500 | \n",
- "
\n",
- " \n",
- " 939 | \n",
- " 1.396600 | \n",
- "
\n",
- " \n",
- " 940 | \n",
- " 1.364200 | \n",
- "
\n",
- " \n",
- " 941 | \n",
- " 1.439700 | \n",
- "
\n",
- " \n",
- " 942 | \n",
- " 1.523800 | \n",
- "
\n",
- " \n",
- " 943 | \n",
- " 1.385000 | \n",
- "
\n",
- " \n",
- " 944 | \n",
- " 1.491100 | \n",
- "
\n",
- " \n",
- " 945 | \n",
- " 1.528500 | \n",
- "
\n",
- " \n",
- " 946 | \n",
- " 1.536600 | \n",
- "
\n",
- " \n",
- " 947 | \n",
- " 1.292600 | \n",
- "
\n",
- " \n",
- " 948 | \n",
- " 1.522600 | \n",
- "
\n",
- " \n",
- " 949 | \n",
- " 1.438900 | \n",
- "
\n",
- " \n",
- " 950 | \n",
- " 1.423500 | \n",
- "
\n",
- " \n",
- " 951 | \n",
- " 1.468600 | \n",
- "
\n",
- " \n",
- " 952 | \n",
- " 1.486000 | \n",
- "
\n",
- " \n",
- " 953 | \n",
- " 1.542800 | \n",
- "
\n",
- " \n",
- " 954 | \n",
- " 1.571000 | \n",
- "
\n",
- " \n",
- " 955 | \n",
- " 1.455500 | \n",
- "
\n",
- " \n",
- " 956 | \n",
- " 1.434000 | \n",
- "
\n",
- " \n",
- " 957 | \n",
- " 1.442600 | \n",
- "
\n",
- " \n",
- " 958 | \n",
- " 1.448800 | \n",
- "
\n",
- " \n",
- " 959 | \n",
- " 1.342500 | \n",
- "
\n",
- " \n",
- " 960 | \n",
- " 1.431400 | \n",
- "
\n",
- " \n",
- " 961 | \n",
- " 1.475000 | \n",
- "
\n",
- " \n",
- " 962 | \n",
- " 1.483500 | \n",
- "
\n",
- " \n",
- " 963 | \n",
- " 1.493600 | \n",
- "
\n",
- " \n",
- " 964 | \n",
- " 1.417400 | \n",
- "
\n",
- " \n",
- " 965 | \n",
- " 1.352000 | \n",
- "
\n",
- " \n",
- " 966 | \n",
- " 1.603600 | \n",
- "
\n",
- " \n",
- " 967 | \n",
- " 1.465300 | \n",
- "
\n",
- " \n",
- " 968 | \n",
- " 1.454300 | \n",
- "
\n",
- " \n",
- " 969 | \n",
- " 1.563800 | \n",
- "
\n",
- " \n",
- " 970 | \n",
- " 1.572700 | \n",
- "
\n",
- " \n",
- " 971 | \n",
- " 1.428400 | \n",
- "
\n",
- " \n",
- " 972 | \n",
- " 1.561200 | \n",
- "
\n",
- " \n",
- " 973 | \n",
- " 1.404200 | \n",
- "
\n",
- " \n",
- " 974 | \n",
- " 1.628700 | \n",
- "
\n",
- " \n",
- " 975 | \n",
- " 1.593300 | \n",
- "
\n",
- " \n",
- " 976 | \n",
- " 1.670900 | \n",
- "
\n",
- " \n",
- " 977 | \n",
- " 1.438500 | \n",
- "
\n",
- " \n",
- " 978 | \n",
- " 1.325400 | \n",
- "
\n",
- " \n",
- " 979 | \n",
- " 1.479200 | \n",
- "
\n",
- " \n",
- " 980 | \n",
- " 1.411100 | \n",
- "
\n",
- " \n",
- " 981 | \n",
- " 1.362000 | \n",
- "
\n",
- " \n",
- " 982 | \n",
- " 1.348000 | \n",
- "
\n",
- " \n",
- " 983 | \n",
- " 1.381000 | \n",
- "
\n",
- " \n",
- " 984 | \n",
- " 1.415500 | \n",
- "
\n",
- " \n",
- " 985 | \n",
- " 1.583300 | \n",
- "
\n",
- " \n",
- " 986 | \n",
- " 1.465600 | \n",
- "
\n",
- " \n",
- " 987 | \n",
- " 1.495200 | \n",
- "
\n",
- " \n",
- " 988 | \n",
- " 1.499300 | \n",
- "
\n",
- " \n",
- " 989 | \n",
- " 1.455300 | \n",
- "
\n",
- " \n",
- " 990 | \n",
- " 1.452700 | \n",
- "
\n",
- " \n",
- " 991 | \n",
- " 1.296100 | \n",
- "
\n",
- " \n",
- " 992 | \n",
- " 1.356300 | \n",
- "
\n",
- " \n",
- " 993 | \n",
- " 1.505300 | \n",
- "
\n",
- " \n",
- " 994 | \n",
- " 1.429800 | \n",
- "
\n",
- " \n",
- " 995 | \n",
- " 1.423700 | \n",
- "
\n",
- " \n",
- " 996 | \n",
- " 1.547100 | \n",
- "
\n",
- " \n",
- " 997 | \n",
- " 1.512000 | \n",
- "
\n",
- " \n",
- " 998 | \n",
- " 1.458500 | \n",
- "
\n",
- " \n",
- " 999 | \n",
- " 1.445100 | \n",
- "
\n",
- " \n",
- " 1000 | \n",
- " 1.381500 | \n",
- "
\n",
- " \n",
- " 1001 | \n",
- " 1.508700 | \n",
- "
\n",
- " \n",
- " 1002 | \n",
- " 1.457800 | \n",
- "
\n",
- " \n",
- " 1003 | \n",
- " 1.508300 | \n",
- "
\n",
- " \n",
- " 1004 | \n",
- " 1.370400 | \n",
- "
\n",
- " \n",
- " 1005 | \n",
- " 1.487900 | \n",
- "
\n",
- " \n",
- " 1006 | \n",
- " 1.517900 | \n",
- "
\n",
- " \n",
- " 1007 | \n",
- " 1.492000 | \n",
- "
\n",
- " \n",
- " 1008 | \n",
- " 1.462700 | \n",
- "
\n",
- " \n",
- " 1009 | \n",
- " 1.397000 | \n",
- "
\n",
- " \n",
- " 1010 | \n",
- " 1.522600 | \n",
- "
\n",
- " \n",
- " 1011 | \n",
- " 1.492100 | \n",
- "
\n",
- " \n",
- " 1012 | \n",
- " 1.318800 | \n",
- "
\n",
- " \n",
- " 1013 | \n",
- " 1.501300 | \n",
- "
\n",
- " \n",
- " 1014 | \n",
- " 1.491900 | \n",
- "
\n",
- " \n",
- " 1015 | \n",
- " 1.413900 | \n",
- "
\n",
- " \n",
- " 1016 | \n",
- " 1.453600 | \n",
- "
\n",
- " \n",
- " 1017 | \n",
- " 1.459800 | \n",
- "
\n",
- " \n",
- " 1018 | \n",
- " 1.492700 | \n",
- "
\n",
- " \n",
- " 1019 | \n",
- " 1.471900 | \n",
- "
\n",
- " \n",
- " 1020 | \n",
- " 1.328900 | \n",
- "
\n",
- " \n",
- " 1021 | \n",
- " 1.552300 | \n",
- "
\n",
- " \n",
- " 1022 | \n",
- " 1.300600 | \n",
- "
\n",
- " \n",
- " 1023 | \n",
- " 1.366600 | \n",
- "
\n",
- " \n",
- " 1024 | \n",
- " 1.365000 | \n",
- "
\n",
- " \n",
- " 1025 | \n",
- " 1.420200 | \n",
- "
\n",
- " \n",
- " 1026 | \n",
- " 1.392600 | \n",
- "
\n",
- " \n",
- " 1027 | \n",
- " 1.492400 | \n",
- "
\n",
- " \n",
- " 1028 | \n",
- " 1.524600 | \n",
- "
\n",
- " \n",
- " 1029 | \n",
- " 1.371600 | \n",
- "
\n",
- " \n",
- " 1030 | \n",
- " 1.431100 | \n",
- "
\n",
- " \n",
- " 1031 | \n",
- " 1.471200 | \n",
- "
\n",
- " \n",
- " 1032 | \n",
- " 1.534200 | \n",
- "
\n",
- " \n",
- " 1033 | \n",
- " 1.417100 | \n",
- "
\n",
- " \n",
- " 1034 | \n",
- " 1.394700 | \n",
- "
\n",
- " \n",
- " 1035 | \n",
- " 1.455900 | \n",
- "
\n",
- " \n",
- " 1036 | \n",
- " 1.536200 | \n",
- "
\n",
- " \n",
- " 1037 | \n",
- " 1.626100 | \n",
- "
\n",
- " \n",
- " 1038 | \n",
- " 1.588400 | \n",
- "
\n",
- " \n",
- " 1039 | \n",
- " 1.538200 | \n",
- "
\n",
- " \n",
- " 1040 | \n",
- " 1.375200 | \n",
- "
\n",
- " \n",
- " 1041 | \n",
- " 1.589300 | \n",
- "
\n",
- " \n",
- " 1042 | \n",
- " 1.557200 | \n",
- "
\n",
- " \n",
- " 1043 | \n",
- " 1.526000 | \n",
- "
\n",
- " \n",
- " 1044 | \n",
- " 1.349600 | \n",
- "
\n",
- " \n",
- " 1045 | \n",
- " 1.420000 | \n",
- "
\n",
- " \n",
- " 1046 | \n",
- " 1.444700 | \n",
- "
\n",
- " \n",
- " 1047 | \n",
- " 1.411600 | \n",
- "
\n",
- " \n",
- " 1048 | \n",
- " 1.444600 | \n",
- "
\n",
- " \n",
- " 1049 | \n",
- " 1.591000 | \n",
- "
\n",
- " \n",
- " 1050 | \n",
- " 1.384300 | \n",
- "
\n",
- " \n",
- " 1051 | \n",
- " 1.470500 | \n",
- "
\n",
- " \n",
- " 1052 | \n",
- " 1.380200 | \n",
- "
\n",
- " \n",
- " 1053 | \n",
- " 1.278600 | \n",
- "
\n",
- " \n",
- " 1054 | \n",
- " 1.276000 | \n",
- "
\n",
- " \n",
- " 1055 | \n",
- " 1.363100 | \n",
- "
\n",
- " \n",
- " 1056 | \n",
- " 1.487500 | \n",
- "
\n",
- " \n",
- " 1057 | \n",
- " 1.583300 | \n",
- "
\n",
- " \n",
- " 1058 | \n",
- " 1.470100 | \n",
- "
\n",
- " \n",
- " 1059 | \n",
- " 1.450300 | \n",
- "
\n",
- " \n",
- " 1060 | \n",
- " 1.449600 | \n",
- "
\n",
- " \n",
- " 1061 | \n",
- " 1.509500 | \n",
- "
\n",
- " \n",
- " 1062 | \n",
- " 1.436600 | \n",
- "
\n",
- " \n",
- " 1063 | \n",
- " 1.538900 | \n",
- "
\n",
- " \n",
- " 1064 | \n",
- " 1.336300 | \n",
- "
\n",
- " \n",
- " 1065 | \n",
- " 1.403300 | \n",
- "
\n",
- " \n",
- " 1066 | \n",
- " 1.440900 | \n",
- "
\n",
- " \n",
- " 1067 | \n",
- " 1.482600 | \n",
- "
\n",
- " \n",
- " 1068 | \n",
- " 1.482000 | \n",
- "
\n",
- " \n",
- " 1069 | \n",
- " 1.474700 | \n",
- "
\n",
- " \n",
- " 1070 | \n",
- " 1.539600 | \n",
- "
\n",
- " \n",
- " 1071 | \n",
- " 1.492200 | \n",
- "
\n",
- " \n",
- " 1072 | \n",
- " 1.409400 | \n",
- "
\n",
- " \n",
- " 1073 | \n",
- " 1.445600 | \n",
- "
\n",
- " \n",
- " 1074 | \n",
- " 1.339800 | \n",
- "
\n",
- " \n",
- " 1075 | \n",
- " 1.505300 | \n",
- "
\n",
- " \n",
- " 1076 | \n",
- " 1.513600 | \n",
- "
\n",
- " \n",
- " 1077 | \n",
- " 1.508100 | \n",
- "
\n",
- " \n",
- " 1078 | \n",
- " 1.592900 | \n",
- "
\n",
- " \n",
- " 1079 | \n",
- " 1.465400 | \n",
- "
\n",
- " \n",
- " 1080 | \n",
- " 1.285500 | \n",
- "
\n",
- " \n",
- " 1081 | \n",
- " 1.412400 | \n",
- "
\n",
- " \n",
- " 1082 | \n",
- " 1.588400 | \n",
- "
\n",
- " \n",
- " 1083 | \n",
- " 1.369300 | \n",
- "
\n",
- " \n",
- " 1084 | \n",
- " 1.412800 | \n",
- "
\n",
- " \n",
- " 1085 | \n",
- " 1.517000 | \n",
- "
\n",
- " \n",
- " 1086 | \n",
- " 1.518100 | \n",
- "
\n",
- " \n",
- " 1087 | \n",
- " 1.453300 | \n",
- "
\n",
- " \n",
- " 1088 | \n",
- " 1.358200 | \n",
- "
\n",
- " \n",
- " 1089 | \n",
- " 1.441300 | \n",
- "
\n",
- " \n",
- " 1090 | \n",
- " 1.573100 | \n",
- "
\n",
- " \n",
- " 1091 | \n",
- " 1.470400 | \n",
- "
\n",
- " \n",
- " 1092 | \n",
- " 1.446200 | \n",
- "
\n",
- " \n",
- " 1093 | \n",
- " 1.404700 | \n",
- "
\n",
- " \n",
- " 1094 | \n",
- " 1.325000 | \n",
- "
\n",
- " \n",
- " 1095 | \n",
- " 1.493900 | \n",
- "
\n",
- " \n",
- " 1096 | \n",
- " 1.340800 | \n",
- "
\n",
- " \n",
- " 1097 | \n",
- " 1.408600 | \n",
- "
\n",
- " \n",
- " 1098 | \n",
- " 1.440300 | \n",
- "
\n",
- " \n",
- " 1099 | \n",
- " 1.479400 | \n",
- "
\n",
- " \n",
- " 1100 | \n",
- " 1.390100 | \n",
- "
\n",
- " \n",
- " 1101 | \n",
- " 1.433100 | \n",
- "
\n",
- " \n",
- " 1102 | \n",
- " 1.412200 | \n",
- "
\n",
- " \n",
- " 1103 | \n",
- " 1.382300 | \n",
- "
\n",
- " \n",
- " 1104 | \n",
- " 1.555300 | \n",
- "
\n",
- " \n",
- " 1105 | \n",
- " 1.388700 | \n",
- "
\n",
- " \n",
- " 1106 | \n",
- " 1.450600 | \n",
- "
\n",
- " \n",
- " 1107 | \n",
- " 1.552400 | \n",
- "
\n",
- " \n",
- " 1108 | \n",
- " 1.364400 | \n",
- "
\n",
- " \n",
- " 1109 | \n",
- " 1.338100 | \n",
- "
\n",
- " \n",
- " 1110 | \n",
- " 1.367700 | \n",
- "
\n",
- " \n",
- " 1111 | \n",
- " 1.418500 | \n",
- "
\n",
- " \n",
- " 1112 | \n",
- " 1.449400 | \n",
- "
\n",
- " \n",
- " 1113 | \n",
- " 1.381700 | \n",
- "
\n",
- " \n",
- " 1114 | \n",
- " 1.358700 | \n",
- "
\n",
- " \n",
- " 1115 | \n",
- " 1.406300 | \n",
- "
\n",
- " \n",
- " 1116 | \n",
- " 1.406500 | \n",
- "
\n",
- " \n",
- " 1117 | \n",
- " 1.363200 | \n",
- "
\n",
- " \n",
- " 1118 | \n",
- " 1.523900 | \n",
- "
\n",
- " \n",
- " 1119 | \n",
- " 1.433600 | \n",
- "
\n",
- " \n",
- " 1120 | \n",
- " 1.452200 | \n",
- "
\n",
- " \n",
- " 1121 | \n",
- " 1.544300 | \n",
- "
\n",
- " \n",
- " 1122 | \n",
- " 1.465900 | \n",
- "
\n",
- " \n",
- " 1123 | \n",
- " 1.377600 | \n",
- "
\n",
- " \n",
- " 1124 | \n",
- " 1.440300 | \n",
- "
\n",
- " \n",
- " 1125 | \n",
- " 1.302200 | \n",
- "
\n",
- " \n",
- " 1126 | \n",
- " 1.468200 | \n",
- "
\n",
- " \n",
- " 1127 | \n",
- " 1.378600 | \n",
- "
\n",
- " \n",
- " 1128 | \n",
- " 1.435300 | \n",
- "
\n",
- " \n",
- " 1129 | \n",
- " 1.479000 | \n",
- "
\n",
- " \n",
- " 1130 | \n",
- " 1.382800 | \n",
- "
\n",
- " \n",
- " 1131 | \n",
- " 1.424500 | \n",
- "
\n",
- " \n",
- " 1132 | \n",
- " 1.428200 | \n",
- "
\n",
- " \n",
- " 1133 | \n",
- " 1.469500 | \n",
- "
\n",
- " \n",
- " 1134 | \n",
- " 1.468200 | \n",
- "
\n",
- " \n",
- " 1135 | \n",
- " 1.444400 | \n",
- "
\n",
- " \n",
- " 1136 | \n",
- " 1.544500 | \n",
- "
\n",
- " \n",
- " 1137 | \n",
- " 1.431600 | \n",
- "
\n",
- " \n",
- " 1138 | \n",
- " 1.442000 | \n",
- "
\n",
- " \n",
- " 1139 | \n",
- " 1.537700 | \n",
- "
\n",
- " \n",
- " 1140 | \n",
- " 1.396300 | \n",
- "
\n",
- " \n",
- " 1141 | \n",
- " 1.410400 | \n",
- "
\n",
- " \n",
- " 1142 | \n",
- " 1.438300 | \n",
- "
\n",
- " \n",
- " 1143 | \n",
- " 1.270800 | \n",
- "
\n",
- " \n",
- " 1144 | \n",
- " 1.449900 | \n",
- "
\n",
- " \n",
- " 1145 | \n",
- " 1.492000 | \n",
- "
\n",
- " \n",
- " 1146 | \n",
- " 1.487600 | \n",
- "
\n",
- " \n",
- " 1147 | \n",
- " 1.369300 | \n",
- "
\n",
- " \n",
- " 1148 | \n",
- " 1.365100 | \n",
- "
\n",
- " \n",
- " 1149 | \n",
- " 1.491000 | \n",
- "
\n",
- " \n",
- " 1150 | \n",
- " 1.413800 | \n",
- "
\n",
- " \n",
- " 1151 | \n",
- " 1.563000 | \n",
- "
\n",
- " \n",
- " 1152 | \n",
- " 1.507800 | \n",
- "
\n",
- " \n",
- " 1153 | \n",
- " 1.301600 | \n",
- "
\n",
- " \n",
- " 1154 | \n",
- " 1.511200 | \n",
- "
\n",
- " \n",
- " 1155 | \n",
- " 1.538100 | \n",
- "
\n",
- " \n",
- " 1156 | \n",
- " 1.301700 | \n",
- "
\n",
- " \n",
- " 1157 | \n",
- " 1.379500 | \n",
- "
\n",
- " \n",
- " 1158 | \n",
- " 1.603100 | \n",
- "
\n",
- " \n",
- " 1159 | \n",
- " 1.453100 | \n",
- "
\n",
- " \n",
- " 1160 | \n",
- " 1.422200 | \n",
- "
\n",
- " \n",
- " 1161 | \n",
- " 1.597700 | \n",
- "
\n",
- " \n",
- " 1162 | \n",
- " 1.541900 | \n",
- "
\n",
- " \n",
- " 1163 | \n",
- " 1.456500 | \n",
- "
\n",
- " \n",
- " 1164 | \n",
- " 1.467500 | \n",
- "
\n",
- " \n",
- " 1165 | \n",
- " 1.303300 | \n",
- "
\n",
- " \n",
- " 1166 | \n",
- " 1.495300 | \n",
- "
\n",
- " \n",
- " 1167 | \n",
- " 1.454000 | \n",
- "
\n",
- " \n",
- " 1168 | \n",
- " 1.562400 | \n",
- "
\n",
- " \n",
- " 1169 | \n",
- " 1.406800 | \n",
- "
\n",
- " \n",
- " 1170 | \n",
- " 1.247900 | \n",
- "
\n",
- " \n",
- " 1171 | \n",
- " 1.631900 | \n",
- "
\n",
- " \n",
- " 1172 | \n",
- " 1.394800 | \n",
- "
\n",
- " \n",
- " 1173 | \n",
- " 1.493100 | \n",
- "
\n",
- " \n",
- " 1174 | \n",
- " 1.379300 | \n",
- "
\n",
- " \n",
- " 1175 | \n",
- " 1.334400 | \n",
- "
\n",
- " \n",
- " 1176 | \n",
- " 1.499200 | \n",
- "
\n",
- " \n",
- " 1177 | \n",
- " 1.505100 | \n",
- "
\n",
- " \n",
- " 1178 | \n",
- " 1.415100 | \n",
- "
\n",
- " \n",
- " 1179 | \n",
- " 1.453500 | \n",
- "
\n",
- " \n",
- " 1180 | \n",
- " 1.368400 | \n",
- "
\n",
- " \n",
- " 1181 | \n",
- " 1.459900 | \n",
- "
\n",
- " \n",
- " 1182 | \n",
- " 1.544000 | \n",
- "
\n",
- " \n",
- " 1183 | \n",
- " 1.549300 | \n",
- "
\n",
- " \n",
- " 1184 | \n",
- " 1.580900 | \n",
- "
\n",
- " \n",
- " 1185 | \n",
- " 1.456400 | \n",
- "
\n",
- " \n",
- " 1186 | \n",
- " 1.465700 | \n",
- "
\n",
- " \n",
- " 1187 | \n",
- " 1.457900 | \n",
- "
\n",
- " \n",
- " 1188 | \n",
- " 1.497100 | \n",
- "
\n",
- " \n",
- " 1189 | \n",
- " 1.600700 | \n",
- "
\n",
- " \n",
- " 1190 | \n",
- " 1.438900 | \n",
- "
\n",
- " \n",
- " 1191 | \n",
- " 1.406400 | \n",
- "
\n",
- " \n",
- " 1192 | \n",
- " 1.415300 | \n",
- "
\n",
- " \n",
- " 1193 | \n",
- " 1.442900 | \n",
- "
\n",
- " \n",
- " 1194 | \n",
- " 1.488600 | \n",
- "
\n",
- " \n",
- " 1195 | \n",
- " 1.457500 | \n",
- "
\n",
- " \n",
- " 1196 | \n",
- " 1.484800 | \n",
- "
\n",
- " \n",
- " 1197 | \n",
- " 1.455100 | \n",
- "
\n",
- " \n",
- " 1198 | \n",
- " 1.467500 | \n",
- "
\n",
- " \n",
- " 1199 | \n",
- " 1.568700 | \n",
- "
\n",
- " \n",
- " 1200 | \n",
- " 1.466500 | \n",
- "
\n",
- " \n",
- " 1201 | \n",
- " 1.495300 | \n",
- "
\n",
- " \n",
- " 1202 | \n",
- " 1.496600 | \n",
- "
\n",
- " \n",
- " 1203 | \n",
- " 1.500400 | \n",
- "
\n",
- " \n",
- " 1204 | \n",
- " 1.571200 | \n",
- "
\n",
- " \n",
- " 1205 | \n",
- " 1.448100 | \n",
- "
\n",
- " \n",
- " 1206 | \n",
- " 1.405400 | \n",
- "
\n",
- " \n",
- " 1207 | \n",
- " 1.510100 | \n",
- "
\n",
- " \n",
- " 1208 | \n",
- " 1.400100 | \n",
- "
\n",
- " \n",
- " 1209 | \n",
- " 1.461100 | \n",
- "
\n",
- " \n",
- " 1210 | \n",
- " 1.368100 | \n",
- "
\n",
- " \n",
- " 1211 | \n",
- " 1.474400 | \n",
- "
\n",
- " \n",
- " 1212 | \n",
- " 1.363600 | \n",
- "
\n",
- " \n",
- " 1213 | \n",
- " 1.564700 | \n",
- "
\n",
- " \n",
- " 1214 | \n",
- " 1.553300 | \n",
- "
\n",
- " \n",
- " 1215 | \n",
- " 1.326500 | \n",
- "
\n",
- " \n",
- " 1216 | \n",
- " 1.338000 | \n",
- "
\n",
- " \n",
- " 1217 | \n",
- " 1.407600 | \n",
- "
\n",
- " \n",
- " 1218 | \n",
- " 1.584600 | \n",
- "
\n",
- " \n",
- " 1219 | \n",
- " 1.384300 | \n",
- "
\n",
- " \n",
- " 1220 | \n",
- " 1.461900 | \n",
- "
\n",
- " \n",
- " 1221 | \n",
- " 1.384800 | \n",
- "
\n",
- " \n",
- " 1222 | \n",
- " 1.406000 | \n",
- "
\n",
- " \n",
- " 1223 | \n",
- " 1.500400 | \n",
- "
\n",
- " \n",
- " 1224 | \n",
- " 1.351400 | \n",
- "
\n",
- " \n",
- " 1225 | \n",
- " 1.399500 | \n",
- "
\n",
- " \n",
- " 1226 | \n",
- " 1.415000 | \n",
- "
\n",
- " \n",
- " 1227 | \n",
- " 1.287200 | \n",
- "
\n",
- " \n",
- " 1228 | \n",
- " 1.417100 | \n",
- "
\n",
- " \n",
- " 1229 | \n",
- " 1.372600 | \n",
- "
\n",
- " \n",
- " 1230 | \n",
- " 1.329200 | \n",
- "
\n",
- " \n",
- " 1231 | \n",
- " 1.547300 | \n",
- "
\n",
- " \n",
- " 1232 | \n",
- " 1.395000 | \n",
- "
\n",
- " \n",
- " 1233 | \n",
- " 1.321300 | \n",
- "
\n",
- " \n",
- " 1234 | \n",
- " 1.296700 | \n",
- "
\n",
- " \n",
- " 1235 | \n",
- " 1.414100 | \n",
- "
\n",
- " \n",
- " 1236 | \n",
- " 1.383600 | \n",
- "
\n",
- " \n",
- " 1237 | \n",
- " 1.384600 | \n",
- "
\n",
- " \n",
- " 1238 | \n",
- " 1.401000 | \n",
- "
\n",
- " \n",
- " 1239 | \n",
- " 1.403600 | \n",
- "
\n",
- " \n",
- " 1240 | \n",
- " 1.572300 | \n",
- "
\n",
- " \n",
- " 1241 | \n",
- " 1.422600 | \n",
- "
\n",
- " \n",
- " 1242 | \n",
- " 1.386300 | \n",
- "
\n",
- " \n",
- " 1243 | \n",
- " 1.365200 | \n",
- "
\n",
- " \n",
- " 1244 | \n",
- " 1.430600 | \n",
- "
\n",
- " \n",
- " 1245 | \n",
- " 1.573700 | \n",
- "
\n",
- " \n",
- " 1246 | \n",
- " 1.518800 | \n",
- "
\n",
- " \n",
- " 1247 | \n",
- " 1.399000 | \n",
- "
\n",
- " \n",
- " 1248 | \n",
- " 1.408100 | \n",
- "
\n",
- " \n",
- " 1249 | \n",
- " 1.542400 | \n",
- "
\n",
- " \n",
- " 1250 | \n",
- " 1.504800 | \n",
- "
\n",
- " \n",
- "
"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "trainer_stats = trainer.train()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "f70aca8b",
- "metadata": {
- "cellView": "form",
- "execution": {
- "iopub.execute_input": "2024-03-28T03:52:49.697610Z",
- "iopub.status.busy": "2024-03-28T03:52:49.696564Z",
- "iopub.status.idle": "2024-03-28T03:52:49.704999Z",
- "shell.execute_reply": "2024-03-28T03:52:49.703738Z"
- },
- "id": "pCqnaKmlO1U9",
- "outputId": "e34545d2-808b-44b3-80d5-c21ca7a2da16",
- "papermill": {
- "duration": 0.146166,
- "end_time": "2024-03-28T03:52:49.707144",
- "exception": false,
- "start_time": "2024-03-28T03:52:49.560978",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "13140.0413 seconds used for training.\n",
- "219.0 minutes used for training.\n",
- "Peak reserved memory = 7.268 GB.\n",
- "Peak reserved memory for training = 2.768 GB.\n",
- "Peak reserved memory % of max memory = 49.281 %.\n",
- "Peak reserved memory for training % of max memory = 18.769 %.\n"
- ]
- }
- ],
- "source": [
- "#@title Show final memory and time stats\n",
- "used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
- "used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n",
- "used_percentage = round(used_memory /max_memory*100, 3)\n",
- "lora_percentage = round(used_memory_for_lora/max_memory*100, 3)\n",
- "print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n",
- "print(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\n",
- "print(f\"Peak reserved memory = {used_memory} GB.\")\n",
- "print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n",
- "print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n",
- "print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "8d5dff6e",
- "metadata": {
- "id": "ekOmTR1hSNcr",
- "papermill": {
- "duration": 0.139123,
- "end_time": "2024-03-28T03:52:49.982166",
- "exception": false,
- "start_time": "2024-03-28T03:52:49.843043",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "\n",
- "### Inference\n",
- "Let's run the model! Since we're using `ChatML`, use `apply_chat_template` with `add_generation_prompt` set to `True` for inference."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "id": "bebbdda7",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T03:52:50.245764Z",
- "iopub.status.busy": "2024-03-28T03:52:50.244849Z",
- "iopub.status.idle": "2024-03-28T03:52:52.425841Z",
- "shell.execute_reply": "2024-03-28T03:52:52.424679Z"
- },
- "id": "kR3gIAX-SM2q",
- "outputId": "d1b13317-4781-4078-90bf-0de74d93f6e4",
- "papermill": {
- "duration": 2.314189,
- "end_time": "2024-03-28T03:52:52.428079",
- "exception": false,
- "start_time": "2024-03-28T03:52:50.113890",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Unsloth: Will map <|im_end|> to EOS = <|im_end|>.\n",
- "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
- "Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "['<|im_start|>user\\nContinue the fibonnaci sequence: 1, 1, 2, 3, 5, 8,<|im_end|> \\n<|im_start|>assistant\\n13<|im_end|>']"
- ]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from unsloth.chat_templates import get_chat_template\n",
- "\n",
- "tokenizer = get_chat_template(\n",
- " tokenizer,\n",
- " chat_template = \"chatml\", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth\n",
- " mapping = {\"role\" : \"from\", \"content\" : \"value\", \"user\" : \"human\", \"assistant\" : \"gpt\"}, # ShareGPT style\n",
- " map_eos_token = True, # Maps <|im_end|> to instead\n",
- ")\n",
- "\n",
- "FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
- "\n",
- "messages = [\n",
- " {\"from\": \"human\", \"value\": \"Continue the fibonnaci sequence: 1, 1, 2, 3, 5, 8,\"},\n",
- "]\n",
- "inputs = tokenizer.apply_chat_template(\n",
- " messages,\n",
- " tokenize = True,\n",
- " add_generation_prompt = True, # Must add for generation\n",
- " return_tensors = \"pt\",\n",
- ").to(\"cuda\")\n",
- "\n",
- "outputs = model.generate(input_ids = inputs, max_new_tokens = 64, use_cache = True)\n",
- "tokenizer.batch_decode(outputs)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "6c7afa6f",
- "metadata": {
- "id": "CrSvZObor0lY",
- "papermill": {
- "duration": 0.138692,
- "end_time": "2024-03-28T03:52:52.712525",
- "exception": false,
- "start_time": "2024-03-28T03:52:52.573833",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- " You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "id": "5cf2ad38",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T03:52:52.996612Z",
- "iopub.status.busy": "2024-03-28T03:52:52.996171Z",
- "iopub.status.idle": "2024-03-28T03:52:53.413691Z",
- "shell.execute_reply": "2024-03-28T03:52:53.412641Z"
- },
- "id": "e2pEuRb1r2Vg",
- "outputId": "3b7b291c-8237-4473-c3db-8bc5ebbf07f9",
- "papermill": {
- "duration": 0.561247,
- "end_time": "2024-03-28T03:52:53.415994",
- "exception": false,
- "start_time": "2024-03-28T03:52:52.854747",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
- "Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "<|im_start|>user\n",
- "Continue the fibonnaci sequence: 1, 1, 2, 3, 5, 8,<|im_end|> \n",
- "<|im_start|>assistant\n",
- "13<|im_end|>\n"
- ]
- }
- ],
- "source": [
- "FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
- "\n",
- "messages = [\n",
- " {\"from\": \"human\", \"value\": \"Continue the fibonnaci sequence: 1, 1, 2, 3, 5, 8,\"},\n",
- "]\n",
- "inputs = tokenizer.apply_chat_template(\n",
- " messages,\n",
- " tokenize = True,\n",
- " add_generation_prompt = True, # Must add for generation\n",
- " return_tensors = \"pt\",\n",
- ").to(\"cuda\")\n",
- "\n",
- "from transformers import TextStreamer\n",
- "text_streamer = TextStreamer(tokenizer)\n",
- "_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = True)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "92f1fa55",
- "metadata": {
- "id": "uMuVrWbjAzhc",
- "papermill": {
- "duration": 0.129027,
- "end_time": "2024-03-28T03:52:53.687793",
- "exception": false,
- "start_time": "2024-03-28T03:52:53.558766",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "\n",
- "### Saving, loading finetuned models\n",
- "To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n",
- "\n",
- "**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "id": "ab909818",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T03:52:53.959109Z",
- "iopub.status.busy": "2024-03-28T03:52:53.958163Z",
- "iopub.status.idle": "2024-03-28T03:53:02.098759Z",
- "shell.execute_reply": "2024-03-28T03:53:02.097480Z"
- },
- "id": "upcOlWe7A1vc",
- "papermill": {
- "duration": 8.274548,
- "end_time": "2024-03-28T03:53:02.101048",
- "exception": false,
- "start_time": "2024-03-28T03:52:53.826500",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "50b8d4fbd7064930bbdf338796e9f09b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "README.md: 0%| | 0.00/579 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "cd246bcf2d034bb2af58ceb7524df6c1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "adapter_model.safetensors: 0%| | 0.00/168M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Saved model to https://huggingface.co/scoliono/groupchat_lora\n"
- ]
- }
- ],
- "source": [
- "model.save_pretrained(\"lora_model\") # Local saving\n",
- "#model.push_to_hub(\"scoliono/groupchat_lora\", token = \"\") # Online saving"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a4861d1b",
- "metadata": {
- "id": "AEEcJ4qfC7Lp",
- "papermill": {
- "duration": 0.145328,
- "end_time": "2024-03-28T03:53:02.385386",
- "exception": false,
- "start_time": "2024-03-28T03:53:02.240058",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "id": "a93cbbb6",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T03:53:02.657540Z",
- "iopub.status.busy": "2024-03-28T03:53:02.657048Z",
- "iopub.status.idle": "2024-03-28T03:53:03.262596Z",
- "shell.execute_reply": "2024-03-28T03:53:03.261476Z"
- },
- "id": "MKX_XKs_BNZR",
- "outputId": "d8dbd499-1881-41b1-9347-d3213ab473df",
- "papermill": {
- "duration": 0.738494,
- "end_time": "2024-03-28T03:53:03.264761",
- "exception": false,
- "start_time": "2024-03-28T03:53:02.526267",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
- "Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "<|im_start|>user\n",
- "What is a famous tall tower in Paris?<|im_end|> \n",
- "<|im_start|>assistant\n",
- "Eiffel tower<|im_end|>\n"
- ]
- }
- ],
- "source": [
- "if False:\n",
- " from unsloth import FastLanguageModel\n",
- " model, tokenizer = FastLanguageModel.from_pretrained(\n",
- " model_name = \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
- " max_seq_length = max_seq_length,\n",
- " dtype = dtype,\n",
- " load_in_4bit = load_in_4bit,\n",
- " )\n",
- " FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
- "\n",
- "messages = [\n",
- " {\"from\": \"human\", \"value\": \"What is a famous tall tower in Paris?\"},\n",
- "]\n",
- "inputs = tokenizer.apply_chat_template(\n",
- " messages,\n",
- " tokenize = True,\n",
- " add_generation_prompt = True, # Must add for generation\n",
- " return_tensors = \"pt\",\n",
- ").to(\"cuda\")\n",
- "\n",
- "from transformers import TextStreamer\n",
- "text_streamer = TextStreamer(tokenizer)\n",
- "_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = True)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "9ada1c2a",
- "metadata": {
- "id": "QQMjaNrjsU5_",
- "papermill": {
- "duration": 0.126538,
- "end_time": "2024-03-28T03:53:03.522957",
- "exception": false,
- "start_time": "2024-03-28T03:53:03.396419",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "id": "3c9e54cd",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T03:53:03.788897Z",
- "iopub.status.busy": "2024-03-28T03:53:03.788477Z",
- "iopub.status.idle": "2024-03-28T03:53:03.793816Z",
- "shell.execute_reply": "2024-03-28T03:53:03.792849Z"
- },
- "id": "yFfaXG0WsQuE",
- "papermill": {
- "duration": 0.139822,
- "end_time": "2024-03-28T03:53:03.795815",
- "exception": false,
- "start_time": "2024-03-28T03:53:03.655993",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "if False:\n",
- " # I highly do NOT suggest - use Unsloth if possible\n",
- " from peft import AutoModelForPeftCausalLM\n",
- " from transformers import AutoTokenizer\n",
- " model = AutoModelForPeftCausalLM.from_pretrained(\n",
- " \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
- " load_in_4bit = load_in_4bit,\n",
- " )\n",
- " tokenizer = AutoTokenizer.from_pretrained(\"lora_model\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "ae8b6865",
- "metadata": {
- "id": "f422JgM9sdVT",
- "papermill": {
- "duration": 0.133177,
- "end_time": "2024-03-28T03:53:04.058229",
- "exception": false,
- "start_time": "2024-03-28T03:53:03.925052",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "### Saving to float16 for VLLM\n",
- "\n",
- "We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "id": "73bff174",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T03:53:04.324460Z",
- "iopub.status.busy": "2024-03-28T03:53:04.324036Z",
- "iopub.status.idle": "2024-03-28T03:53:04.331159Z",
- "shell.execute_reply": "2024-03-28T03:53:04.330165Z"
- },
- "id": "iHjt_SMYsd3P",
- "papermill": {
- "duration": 0.140814,
- "end_time": "2024-03-28T03:53:04.333322",
- "exception": false,
- "start_time": "2024-03-28T03:53:04.192508",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "# Merge to 16bit\n",
- "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n",
- "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n",
- "\n",
- "# Merge to 4bit\n",
- "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\n",
- "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n",
- "\n",
- "# Just LoRA adapters\n",
- "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n",
- "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"lora\", token = \"\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "96270533",
- "metadata": {
- "id": "TCv4vXHd61i7",
- "papermill": {
- "duration": 0.141816,
- "end_time": "2024-03-28T03:53:04.663103",
- "exception": false,
- "start_time": "2024-03-28T03:53:04.521287",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "### GGUF / llama.cpp Conversion\n",
- "To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n",
- "\n",
- "Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n",
- "* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n",
- "* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n",
- "* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "id": "cd67a84a",
- "metadata": {
- "execution": {
- "iopub.execute_input": "2024-03-28T03:53:04.940718Z",
- "iopub.status.busy": "2024-03-28T03:53:04.939798Z",
- "iopub.status.idle": "2024-03-28T03:53:04.948324Z",
- "shell.execute_reply": "2024-03-28T03:53:04.947106Z"
- },
- "id": "FqfebeAdT073",
- "papermill": {
- "duration": 0.147412,
- "end_time": "2024-03-28T03:53:04.951208",
- "exception": false,
- "start_time": "2024-03-28T03:53:04.803796",
- "status": "completed"
- },
- "tags": []
- },
- "outputs": [],
- "source": [
- "# Save to 8bit Q8_0\n",
- "if False: model.save_pretrained_gguf(\"model\", tokenizer,)\n",
- "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, token = \"\")\n",
- "\n",
- "# Save to 16bit GGUF\n",
- "if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"f16\")\n",
- "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"f16\", token = \"\")\n",
- "\n",
- "# Save to q4_k_m GGUF\n",
- "if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"q4_k_m\")\n",
- "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"q4_k_m\", token = \"\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "974bde3a",
- "metadata": {
- "id": "bDp0zNpwe6U_",
- "papermill": {
- "duration": 0.159571,
- "end_time": "2024-03-28T03:53:05.263051",
- "exception": false,
- "start_time": "2024-03-28T03:53:05.103480",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html)."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c25b0c14",
- "metadata": {
- "id": "Zt9CHJqO6p30",
- "papermill": {
- "duration": 0.126368,
- "end_time": "2024-03-28T03:53:05.527719",
- "exception": false,
- "start_time": "2024-03-28T03:53:05.401351",
- "status": "completed"
- },
- "tags": []
- },
- "source": [
- "And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n",
- "\n",
- "Some other links:\n",
- "1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)\n",
- "2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)\n",
- "3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n",
- "4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n",
- "5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)\n",
- "6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n",
- "7. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)\n",
- "9. Gemma 6 trillion tokens is 2.5x faster! [free Colab](https://colab.research.google.com/drive/10NbwlsRChbma1v55m8LAPYG15uQv6HLo?usp=sharing)\n",
- "\n",
- "\n",
- "
\n",
- "
\n",
- "
Support our work if you can! Thanks!\n",
- "
"
- ]
- }
- ],
- "metadata": {
- "accelerator": "GPU",
- "colab": {
- "gpuType": "T4",
- "provenance": []
- },
- "kaggle": {
- "accelerator": "nvidiaTeslaT4",
- "dataSources": [
- {
- "databundleVersionId": 8069943,
- "datasetId": 4675483,
- "sourceId": 7960221,
- "sourceType": "datasetVersion"
- }
- ],
- "dockerImageVersionId": 30674,
- "isGpuEnabled": true,
- "isInternetEnabled": true,
- "language": "python",
- "sourceType": "notebook"
- },
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.13"
- },
- "papermill": {
- "default_parameters": {},
- "duration": 13460.036096,
- "end_time": "2024-03-28T03:53:09.311636",
- "environment_variables": {},
- "exception": null,
- "input_path": "__notebook__.ipynb",
- "output_path": "__notebook__.ipynb",
- "parameters": {},
- "start_time": "2024-03-28T00:08:49.275540",
- "version": "2.5.0"
- },
- "widgets": {
- "application/vnd.jupyter.widget-state+json": {
- "state": {
- "0115b7fb1d69489db936630116a2fd95": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "0291f4d1f4734954946a71afef1e1519": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_158f6c4ac7424b11b5c52e11c44b7048",
- "IPY_MODEL_a3f2617affcc4004a6c90a0aff265efa",
- "IPY_MODEL_32872e40c0614d86b196c45a6daf6f0f"
- ],
- "layout": "IPY_MODEL_d181e166c5624b939f1e52ea36f0b501"
- }
- },
- "07b887a58fa24b6bbac72e1912ce6f2d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c923307d2ec34dcbb6ffc9c72d6bd907",
- "placeholder": "",
- "style": "IPY_MODEL_3fea601e40ad410e9fcbd3f8746e0114",
- "value": " 493k/493k [00:00<00:00, 32.6MB/s]"
- }
- },
- "0ae97a9e92204ba3adeda272690ca00a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_dfc5e79bc6df4103862801033bf223c4",
- "max": 10000,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_80730c77f59f4d77a7309968c3565eff",
- "value": 10000
- }
- },
- "0aea08bb4b424c028157fc47920880ba": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e8060f5acdc44fb4b08b9031cda127be",
- "placeholder": "",
- "style": "IPY_MODEL_83892ec619ff46d69a90e59fb1a31699",
- "value": " 438/438 [00:00<00:00, 36.5kB/s]"
- }
- },
- "0b7256cbb0df4612892401684edf4c6b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "0c08cdcc7686498f9dfca58fd546aa81": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "0d0bc50934304ebbbd5767774c1bba6c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "107e30bda0f7447ba2cae4b4b8e439d8": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "1173bc14f32e46e99dc6860367629ed0": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "1334bfd9e02f46baaced48e306753b61": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5e3a5f9429134ac5bae37c33e20141f4",
- "max": 493443,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_645835ede2a64a698f3e7ae720ebb524",
- "value": 493443
- }
- },
- "1430fff1572a43fbadecedb54630c004": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "158f6c4ac7424b11b5c52e11c44b7048": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_cfdedb4f201c4a1d82c6dd2c19d66eab",
- "placeholder": "",
- "style": "IPY_MODEL_1d2abbae10d5489ca31f2923e3608ce5",
- "value": "model.safetensors: 100%"
- }
- },
- "1990a051263f4ecba55c2d190b89d18a": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "1a6305f14afe472c911c243151a7d754": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f5610eccab294c99ab9004d5cd496185",
- "placeholder": "",
- "style": "IPY_MODEL_5971293c1eb243e9835079846e57e888",
- "value": "tokenizer.model: 100%"
- }
- },
- "1d2abbae10d5489ca31f2923e3608ce5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "22ac3169e6a74ef59352c9c1a633940a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3524bea482354033a8867f5d8808e2bf",
- "placeholder": "",
- "style": "IPY_MODEL_ca92331767b848c5af22af298c030b7d",
- "value": " 579/579 [00:00<00:00, 34.5kB/s]"
- }
- },
- "235497034e5c4a3293591576999865e8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d368cc755f8142f7852135fcac43007b",
- "placeholder": "",
- "style": "IPY_MODEL_53494ae85aea477c9daac23b952ebd01",
- "value": "Map (num_proc=2): 100%"
- }
- },
- "2543f037a9b048b6a49d074fac474e7a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "32872e40c0614d86b196c45a6daf6f0f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e5601c035def4d1ab1e146370d3c0dc9",
- "placeholder": "",
- "style": "IPY_MODEL_e8d7de2bb23a4d67b5f9e8b72e8b6e86",
- "value": " 4.13G/4.13G [00:23<00:00, 207MB/s]"
- }
- },
- "3524bea482354033a8867f5d8808e2bf": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "374a7e4da1474ba1b4827d867f1a49ad": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "3fea601e40ad410e9fcbd3f8746e0114": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "430e25b60ae544ca932139c6232e8580": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_8eb0d1b9b2e54c5f8515768af89677aa",
- "placeholder": "",
- "style": "IPY_MODEL_6867905d03624962a4b4ebcf818ea218",
- "value": "generation_config.json: 100%"
- }
- },
- "4646579350cb4e44b075a18f9eee2d33": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "46660e1d775d4280b3d942b03d1bb54e": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "4728bc10d9e64cee99025ee07689a449": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "48d009073a83434f946f292e830a371d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "50b8d4fbd7064930bbdf338796e9f09b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_5177a503e53a4fb38db35b3f13400ef6",
- "IPY_MODEL_c858048f53f94de2a1b0a1982834c358",
- "IPY_MODEL_22ac3169e6a74ef59352c9c1a633940a"
- ],
- "layout": "IPY_MODEL_ab97cbd99a3c4013a9ad37fabbb1cc9f"
- }
- },
- "5177a503e53a4fb38db35b3f13400ef6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1990a051263f4ecba55c2d190b89d18a",
- "placeholder": "",
- "style": "IPY_MODEL_a7298a133c0c4735afb22c3622b47124",
- "value": "README.md: 100%"
- }
- },
- "528c2302fc7a480895a850916b8efaba": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "533ef0f3916b423cbc151d4b1929030e": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "53494ae85aea477c9daac23b952ebd01": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "54a9cc9d3fea4b2f84a90d9540654950": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "58648d0ab785418089b24914c46df7a4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e9db2da5e7604322a8ef642e23eb9e3d",
- "IPY_MODEL_f2786dfcd82a4e14b70e5bae4a78fe51",
- "IPY_MODEL_5e3e1df5ad73479cb78e29820aba2f93"
- ],
- "layout": "IPY_MODEL_528c2302fc7a480895a850916b8efaba"
- }
- },
- "59233cb5bb5849d0800cde9d3c129184": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_eeef8455b81547249bff4b71af02f6b1",
- "IPY_MODEL_5f2c77ad6e1f4c1091016b86703586e9",
- "IPY_MODEL_0aea08bb4b424c028157fc47920880ba"
- ],
- "layout": "IPY_MODEL_d8e77b14b649416bbe4f177d7c3013ed"
- }
- },
- "5971293c1eb243e9835079846e57e888": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "5e3a5f9429134ac5bae37c33e20141f4": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "5e3e1df5ad73479cb78e29820aba2f93": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_bf88208e773c423b904ce0f8820f85bc",
- "placeholder": "",
- "style": "IPY_MODEL_54a9cc9d3fea4b2f84a90d9540654950",
- "value": " 1.05k/1.05k [00:00<00:00, 81.7kB/s]"
- }
- },
- "5f2c77ad6e1f4c1091016b86703586e9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ff7a5292b7d649e3a089c5efa790122e",
- "max": 438,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_e1cfa28343e844c1ae94eb516a91c2b4",
- "value": 438
- }
- },
- "637ccbae2ae14930be31fd9484a86b52": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_b0496f143171468fa45614691e9a47f8",
- "max": 116,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c03125a200e1408fbb7fa0a20abebda0",
- "value": 116
- }
- },
- "645835ede2a64a698f3e7ae720ebb524": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "6867905d03624962a4b4ebcf818ea218": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "6d4015e9a13b4ce99d5d1b2b1aa86ded": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "71c42de5a7fd4df1a85295b07c33c1e6": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "720036ee71e346ce909dfd8c5e3a7e29": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1173bc14f32e46e99dc6860367629ed0",
- "max": 167832240,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_a27d39bbfd7642269fa34a53496bf3c9",
- "value": 167832240
- }
- },
- "776a339dd3044e83b7a34444ddc008e2": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "77abdec067904f0081dfd825b2521ec4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1430fff1572a43fbadecedb54630c004",
- "placeholder": "",
- "style": "IPY_MODEL_0b7256cbb0df4612892401684edf4c6b",
- "value": "tokenizer.json: 100%"
- }
- },
- "792a56bc40ea4529886d964473d96954": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "7963938987694831aedd24fd6061a8df": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_dd636d310bfe41d7a22230b10918ffe3",
- "placeholder": "",
- "style": "IPY_MODEL_f364f4bbb7f847f780ffc157ab872703",
- "value": " 116/116 [00:00<00:00, 8.89kB/s]"
- }
- },
- "80730c77f59f4d77a7309968c3565eff": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "83892ec619ff46d69a90e59fb1a31699": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "83fd232b47314e42bbe7526e0ab7aecf": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "84af480c5f6c4ad490074ef103af5628": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_77abdec067904f0081dfd825b2521ec4",
- "IPY_MODEL_d3995c4222f9481b81dd057d8177afd8",
- "IPY_MODEL_b1040d0671624ccd965ea5f99adbd0d3"
- ],
- "layout": "IPY_MODEL_776a339dd3044e83b7a34444ddc008e2"
- }
- },
- "87f33e5bd27c4885892c9826a384e8a5": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "8eb0d1b9b2e54c5f8515768af89677aa": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "92da558bad0e4330a2b4b3041ed24aad": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_1a6305f14afe472c911c243151a7d754",
- "IPY_MODEL_1334bfd9e02f46baaced48e306753b61",
- "IPY_MODEL_07b887a58fa24b6bbac72e1912ce6f2d"
- ],
- "layout": "IPY_MODEL_46660e1d775d4280b3d942b03d1bb54e"
- }
- },
- "944f3bb3fc0f4ef594424d1ed90f391b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_430e25b60ae544ca932139c6232e8580",
- "IPY_MODEL_637ccbae2ae14930be31fd9484a86b52",
- "IPY_MODEL_7963938987694831aedd24fd6061a8df"
- ],
- "layout": "IPY_MODEL_b94ada6bb88f48e0a53f8a048b05d21f"
- }
- },
- "9a80eab1ff094eab808ae272670a4f54": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "9aeb5170934f4e7da9748e8859e40e30": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_b92b53c1c7f7451dafcc0e12c701040d",
- "IPY_MODEL_e6b7217de79c44429aa4ca0cace148d5",
- "IPY_MODEL_e7aead7914b54afa8c293ef84bb3e2b0"
- ],
- "layout": "IPY_MODEL_bc9b2ac4aead46daa51e5d14cf3600c1"
- }
- },
- "9fd39fcb80594936a1b160dfe290877b": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "a03228389e2841db96cafad58e0a45f1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "a12807eb4e4f4ad7bcd78339c990cdd4": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "a24ef002e2284485b815a060326d1754": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "a27d39bbfd7642269fa34a53496bf3c9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "a3f2617affcc4004a6c90a0aff265efa": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_71c42de5a7fd4df1a85295b07c33c1e6",
- "max": 4125687906,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_a24ef002e2284485b815a060326d1754",
- "value": 4125687906
- }
- },
- "a7298a133c0c4735afb22c3622b47124": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "a96c934ca8474a3a8376256b78e9eedf": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "ab97cbd99a3c4013a9ad37fabbb1cc9f": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "aeb4c56bfa5f44dfa78b95944c76e1cd": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e5a882949c3346808f857cf04d74d7de",
- "placeholder": "",
- "style": "IPY_MODEL_0115b7fb1d69489db936630116a2fd95",
- "value": " 10000/10000 [00:04<00:00, 2544.61 examples/s]"
- }
- },
- "b0496f143171468fa45614691e9a47f8": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "b1040d0671624ccd965ea5f99adbd0d3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_533ef0f3916b423cbc151d4b1929030e",
- "placeholder": "",
- "style": "IPY_MODEL_c6264af6bcf3482caefca09fce59935b",
- "value": " 1.80M/1.80M [00:00<00:00, 25.2MB/s]"
- }
- },
- "b178f8303b8548d49eb4d1bd4e419f6e": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "b83b5e49b46742f1b266dc5f96fa7c73": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "b92b53c1c7f7451dafcc0e12c701040d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_b178f8303b8548d49eb4d1bd4e419f6e",
- "placeholder": "",
- "style": "IPY_MODEL_6d4015e9a13b4ce99d5d1b2b1aa86ded",
- "value": "tokenizer_config.json: 100%"
- }
- },
- "b94ada6bb88f48e0a53f8a048b05d21f": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "bc9b2ac4aead46daa51e5d14cf3600c1": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "bf88208e773c423b904ce0f8820f85bc": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "c03125a200e1408fbb7fa0a20abebda0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "c112e03f254a4cfe92ae9e0d584aa462": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e0406a70ccb64deb833e45b38f3a680e",
- "placeholder": "",
- "style": "IPY_MODEL_e18b8e5bfe714bc680f59a70ac38c014",
- "value": "adapter_model.safetensors: 100%"
- }
- },
- "c6135b0b86f6471181ee3cf4945652c8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0c08cdcc7686498f9dfca58fd546aa81",
- "placeholder": "",
- "style": "IPY_MODEL_a96c934ca8474a3a8376256b78e9eedf",
- "value": " 168M/168M [00:04<00:00, 31.3MB/s]"
- }
- },
- "c6264af6bcf3482caefca09fce59935b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "c858048f53f94de2a1b0a1982834c358": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a12807eb4e4f4ad7bcd78339c990cdd4",
- "max": 579,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_0d0bc50934304ebbbd5767774c1bba6c",
- "value": 579
- }
- },
- "c8edb73b6d7f4e97a737a3bfd67d8a75": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "c923307d2ec34dcbb6ffc9c72d6bd907": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ca92331767b848c5af22af298c030b7d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "cd246bcf2d034bb2af58ceb7524df6c1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_c112e03f254a4cfe92ae9e0d584aa462",
- "IPY_MODEL_720036ee71e346ce909dfd8c5e3a7e29",
- "IPY_MODEL_c6135b0b86f6471181ee3cf4945652c8"
- ],
- "layout": "IPY_MODEL_4646579350cb4e44b075a18f9eee2d33"
- }
- },
- "cfdedb4f201c4a1d82c6dd2c19d66eab": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "d181e166c5624b939f1e52ea36f0b501": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "d368cc755f8142f7852135fcac43007b": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "d3995c4222f9481b81dd057d8177afd8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c8edb73b6d7f4e97a737a3bfd67d8a75",
- "max": 1795303,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_a03228389e2841db96cafad58e0a45f1",
- "value": 1795303
- }
- },
- "d8e77b14b649416bbe4f177d7c3013ed": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "dd636d310bfe41d7a22230b10918ffe3": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "dfc5e79bc6df4103862801033bf223c4": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e0406a70ccb64deb833e45b38f3a680e": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e18b8e5bfe714bc680f59a70ac38c014": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "e1cfa28343e844c1ae94eb516a91c2b4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "e363d483a5134f5d873c11f936d2d9f5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_235497034e5c4a3293591576999865e8",
- "IPY_MODEL_0ae97a9e92204ba3adeda272690ca00a",
- "IPY_MODEL_aeb4c56bfa5f44dfa78b95944c76e1cd"
- ],
- "layout": "IPY_MODEL_9fd39fcb80594936a1b160dfe290877b"
- }
- },
- "e5601c035def4d1ab1e146370d3c0dc9": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e5a882949c3346808f857cf04d74d7de": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e6b7217de79c44429aa4ca0cace148d5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_374a7e4da1474ba1b4827d867f1a49ad",
- "max": 971,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_48d009073a83434f946f292e830a371d",
- "value": 971
- }
- },
- "e7aead7914b54afa8c293ef84bb3e2b0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_107e30bda0f7447ba2cae4b4b8e439d8",
- "placeholder": "",
- "style": "IPY_MODEL_792a56bc40ea4529886d964473d96954",
- "value": " 971/971 [00:00<00:00, 74.7kB/s]"
- }
- },
- "e8060f5acdc44fb4b08b9031cda127be": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e8d7de2bb23a4d67b5f9e8b72e8b6e86": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "e9db2da5e7604322a8ef642e23eb9e3d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_9a80eab1ff094eab808ae272670a4f54",
- "placeholder": "",
- "style": "IPY_MODEL_2543f037a9b048b6a49d074fac474e7a",
- "value": "config.json: 100%"
- }
- },
- "eeef8455b81547249bff4b71af02f6b1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_87f33e5bd27c4885892c9826a384e8a5",
- "placeholder": "",
- "style": "IPY_MODEL_b83b5e49b46742f1b266dc5f96fa7c73",
- "value": "special_tokens_map.json: 100%"
- }
- },
- "f2786dfcd82a4e14b70e5bae4a78fe51": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_83fd232b47314e42bbe7526e0ab7aecf",
- "max": 1055,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_4728bc10d9e64cee99025ee07689a449",
- "value": 1055
- }
- },
- "f364f4bbb7f847f780ffc157ab872703": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "f5610eccab294c99ab9004d5cd496185": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ff7a5292b7d649e3a089c5efa790122e": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- }
- },
- "version_major": 2,
- "version_minor": 0
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
+{"metadata":{"accelerator":"GPU","colab":{"provenance":[],"gpuType":"T4"},"kernelspec":{"name":"python3","display_name":"Python 3","language":"python"},"language_info":{"name":"python","version":"3.10.13","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"},"widgets":{"application/vnd.jupyter.widget-state+json":{"4b6316870ae142ba9abf2b399edaaeea":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_c3315eb9e7ef42c298b7ba5f7636c373","IPY_MODEL_b553db45b4204434b015593b84861d9d","IPY_MODEL_ee88fbb010e349d4a840275150cc59eb"],"layout":"IPY_MODEL_5d9ac0fdb1c24c59a89390b3fbb6481e"}},"c3315eb9e7ef42c298b7ba5f7636c373":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_ee2d57cc909b47e7a96a6348c3bc64c0","placeholder":"","style":"IPY_MODEL_e8f5782342af48549b22edf99517e71d","value":"config.json: 100%"}},"b553db45b4204434b015593b84861d9d":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_b520ce59a04444f6b5c5c9351c02877d","max":1055,"min":0,"orientation":"horizontal","style":"IPY_MODEL_52a94645e9ca44768f44d46e5a4f2f87","value":1055}},"ee88fbb010e349d4a840275150cc59eb":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_f800e837619e4ebbb860a5648a21a078","placeholder":"","style":"IPY_MODEL_be41d9ff020b4a4a8f7ec9a5c5aba8f8","value":" 1.05k/1.05k [00:00<00:00, 14.6kB/s]"}},"5d9ac0fdb1c24c59a89390b3fbb6481e":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"ee2d57cc909b47e7a96a6348c3bc64c0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e8f5782342af48549b22edf99517e71d":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"b520ce59a04444f6b5c5c9351c02877d":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"52a94645e9ca44768f44d46e5a4f2f87":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"f800e837619e4ebbb860a5648a21a078":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"be41d9ff020b4a4a8f7ec9a5c5aba8f8":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"78d1378806944b54b6dc7d9088d0540a":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_16486c7ebb0c40cbb05b0f1a146004bf","IPY_MODEL_3dc95ac19cb948b78179a8617917ec44","IPY_MODEL_aacd5f3b4d6c4730b13c4e75b461bcca"],"layout":"IPY_MODEL_9c439e6ecc57445092c0ea43d6c46640"}},"16486c7ebb0c40cbb05b0f1a146004bf":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_07cde8ce0ca54e3a95a183541d26bc2e","placeholder":"","style":"IPY_MODEL_2f6b00e4bbfc48f5881a8ae386fa8a3a","value":"model.safetensors: 100%"}},"3dc95ac19cb948b78179a8617917ec44":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_e15aa09fe7d74cb7b348bfe142a8b172","max":4125687906,"min":0,"orientation":"horizontal","style":"IPY_MODEL_63f47e74c4b644f1b8e35f392a6a626e","value":4125687906}},"aacd5f3b4d6c4730b13c4e75b461bcca":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_1f5d1e8ff5ea47e4aa04c12bdf2f8df7","placeholder":"","style":"IPY_MODEL_b25110a1ed2b4fe8ae7fc5cdd724362b","value":" 4.13G/4.13G [00:34<00:00, 225MB/s]"}},"9c439e6ecc57445092c0ea43d6c46640":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"07cde8ce0ca54e3a95a183541d26bc2e":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"2f6b00e4bbfc48f5881a8ae386fa8a3a":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"e15aa09fe7d74cb7b348bfe142a8b172":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"63f47e74c4b644f1b8e35f392a6a626e":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"1f5d1e8ff5ea47e4aa04c12bdf2f8df7":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"b25110a1ed2b4fe8ae7fc5cdd724362b":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"661c67646b5948449c2d71f5814776b4":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_2ea177d7a1904285a4f641c7581736b9","IPY_MODEL_8234c35bfe33441a8fdcf48dccc0563b","IPY_MODEL_50d47462e5ea45a7a3e75b88fa3e272e"],"layout":"IPY_MODEL_75c8a575acd94d0ab2ee673af56f56c1"}},"2ea177d7a1904285a4f641c7581736b9":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_f07da0c5e3da4213ade400cb3a6db827","placeholder":"","style":"IPY_MODEL_6ef59867eace4a8aba3bc6652b579b7e","value":"generation_config.json: 100%"}},"8234c35bfe33441a8fdcf48dccc0563b":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_6d603e8d4b504239adf1820f6c1b608e","max":116,"min":0,"orientation":"horizontal","style":"IPY_MODEL_cab2232116d647ef94aa89ffa0515774","value":116}},"50d47462e5ea45a7a3e75b88fa3e272e":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_077d992a3da3424194ee45301e4c02ba","placeholder":"","style":"IPY_MODEL_0c5fe7ba93aa496a9eea2bdb8d692fb5","value":" 116/116 [00:00<00:00, 5.61kB/s]"}},"75c8a575acd94d0ab2ee673af56f56c1":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"f07da0c5e3da4213ade400cb3a6db827":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"6ef59867eace4a8aba3bc6652b579b7e":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"6d603e8d4b504239adf1820f6c1b608e":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"cab2232116d647ef94aa89ffa0515774":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"077d992a3da3424194ee45301e4c02ba":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0c5fe7ba93aa496a9eea2bdb8d692fb5":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"3f40e8b99e1043e8917ff2c3e1e3dd29":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_0fabb8d03b0d42178538a829c843dfed","IPY_MODEL_5c6d56ca98e146d6853289851fe5baf7","IPY_MODEL_07e004c9526c4481836d68ef53c9b669"],"layout":"IPY_MODEL_128211077ca940d499d90667ad27dacb"}},"0fabb8d03b0d42178538a829c843dfed":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_6e6b1089e6504aa5a2ccc61953b5e433","placeholder":"","style":"IPY_MODEL_0ef52843237c48dd9566c4dff3e7b42c","value":"tokenizer_config.json: 100%"}},"5c6d56ca98e146d6853289851fe5baf7":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_c7fd527ba5e74ddfb3a1376bb219b6c1","max":971,"min":0,"orientation":"horizontal","style":"IPY_MODEL_c4a594e3a66d49989c914bbc93b679c1","value":971}},"07e004c9526c4481836d68ef53c9b669":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_c87c9608e866410ba46d49b44d0867ca","placeholder":"","style":"IPY_MODEL_e5a03a389d9a4f68bbc7c7939ecf7206","value":" 971/971 [00:00<00:00, 75.0kB/s]"}},"128211077ca940d499d90667ad27dacb":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"6e6b1089e6504aa5a2ccc61953b5e433":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0ef52843237c48dd9566c4dff3e7b42c":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"c7fd527ba5e74ddfb3a1376bb219b6c1":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c4a594e3a66d49989c914bbc93b679c1":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"c87c9608e866410ba46d49b44d0867ca":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e5a03a389d9a4f68bbc7c7939ecf7206":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"ced6f4b20c304ab6b19858766505a596":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_62ddc3bbcdcc4cb2993828d860ffaacd","IPY_MODEL_11d662dad31041baba79243d3ed687c0","IPY_MODEL_4f1a242530a3417c8309a7eb824f0c4a"],"layout":"IPY_MODEL_10ba528042394217b6cf5d3bd6288db0"}},"62ddc3bbcdcc4cb2993828d860ffaacd":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_f5a09713f5d2419cac940042d7900921","placeholder":"","style":"IPY_MODEL_eb11542214a344c7827fa28472f4b5ef","value":"tokenizer.model: 100%"}},"11d662dad31041baba79243d3ed687c0":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_cd0f5f8d4f3345e09bb76f11ad197934","max":493443,"min":0,"orientation":"horizontal","style":"IPY_MODEL_ccfcff888b8941a9987071ea8c284d17","value":493443}},"4f1a242530a3417c8309a7eb824f0c4a":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_c947d50a70694e0f8cbe5351b8219938","placeholder":"","style":"IPY_MODEL_e32de93685f249828a0a73a52cf1438b","value":" 493k/493k [00:00<00:00, 2.23MB/s]"}},"10ba528042394217b6cf5d3bd6288db0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"f5a09713f5d2419cac940042d7900921":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"eb11542214a344c7827fa28472f4b5ef":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"cd0f5f8d4f3345e09bb76f11ad197934":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"ccfcff888b8941a9987071ea8c284d17":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"c947d50a70694e0f8cbe5351b8219938":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e32de93685f249828a0a73a52cf1438b":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"3f03fca984754fd7897ac389e661511e":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_8907ec143bb8415fb045fa3480a0c024","IPY_MODEL_7347484610f9459ba1b11f32825b9a6f","IPY_MODEL_63f7b027083f44139b387ed6595a5f10"],"layout":"IPY_MODEL_2a5c6adc4491433392b708c854d05786"}},"8907ec143bb8415fb045fa3480a0c024":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_b1eb529e794c4afb9591a92f383234c7","placeholder":"","style":"IPY_MODEL_e2906dc03b4640d6aea44b52f6292189","value":"tokenizer.json: 100%"}},"7347484610f9459ba1b11f32825b9a6f":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_04bb72bc05384a7fab8384b96a9165b0","max":1795303,"min":0,"orientation":"horizontal","style":"IPY_MODEL_a9c322a9110d44b8b06438c6f6f5acac","value":1795303}},"63f7b027083f44139b387ed6595a5f10":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_de7ab932d6954f73adef9fffaa6afee0","placeholder":"","style":"IPY_MODEL_a5b22ec5d43345a2b957301fed556b94","value":" 1.80M/1.80M [00:00<00:00, 27.3MB/s]"}},"2a5c6adc4491433392b708c854d05786":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"b1eb529e794c4afb9591a92f383234c7":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e2906dc03b4640d6aea44b52f6292189":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"04bb72bc05384a7fab8384b96a9165b0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"a9c322a9110d44b8b06438c6f6f5acac":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"de7ab932d6954f73adef9fffaa6afee0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"a5b22ec5d43345a2b957301fed556b94":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"ff1229fe81b2467892fcebb5516c586a":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_9bc4151c386e4fe49b2aa882159aff88","IPY_MODEL_4d2e7f9d8ec34c24a869d75c1e08cf54","IPY_MODEL_e2b109ab9d664847b1611783ed75b240"],"layout":"IPY_MODEL_9195aa2c13a247b6836701b7d47f8f6d"}},"9bc4151c386e4fe49b2aa882159aff88":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_bd68af52e4014418b87adc1338bc7047","placeholder":"","style":"IPY_MODEL_0f5ea613817347839697acfec3aef00b","value":"special_tokens_map.json: 100%"}},"4d2e7f9d8ec34c24a869d75c1e08cf54":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_8d8d93e079fb43479c6aa736837482c7","max":438,"min":0,"orientation":"horizontal","style":"IPY_MODEL_2178818d79ff4963b663e74c04303912","value":438}},"e2b109ab9d664847b1611783ed75b240":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_9653b6a3d7fd4014ad6261b8a91d0225","placeholder":"","style":"IPY_MODEL_4f2138b17ad24fa894566001543e7e55","value":" 438/438 [00:00<00:00, 25.0kB/s]"}},"9195aa2c13a247b6836701b7d47f8f6d":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"bd68af52e4014418b87adc1338bc7047":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0f5ea613817347839697acfec3aef00b":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"8d8d93e079fb43479c6aa736837482c7":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"2178818d79ff4963b663e74c04303912":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"9653b6a3d7fd4014ad6261b8a91d0225":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"4f2138b17ad24fa894566001543e7e55":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"9ae302db43ac477fbfac4524d9aa3382":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_094b6478ec2b402fac8d4fc0c2921687","IPY_MODEL_64ae5dbec3fa4ea3abbada99ddc5b95f","IPY_MODEL_d2f03ac06cf24ecbaf9fecebfbc75704"],"layout":"IPY_MODEL_e00d429535b2418cb3f2caafcb661b2b"}},"094b6478ec2b402fac8d4fc0c2921687":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_2aaf95a7cdeb424bb369b658b0d91850","placeholder":"","style":"IPY_MODEL_439a8d79e8064125b694e23d8b3cda99","value":"Downloading readme: 100%"}},"64ae5dbec3fa4ea3abbada99ddc5b95f":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_05c7968b32744985bdd67900cc5cc5d0","max":11610,"min":0,"orientation":"horizontal","style":"IPY_MODEL_e90def295593458e99241c538186c3b5","value":11610}},"d2f03ac06cf24ecbaf9fecebfbc75704":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_8fb7fa4f8a274d3eb3e58953b1e673b0","placeholder":"","style":"IPY_MODEL_6404a027f5b0439786996b45695ea17c","value":" 11.6k/11.6k [00:00<00:00, 193kB/s]"}},"e00d429535b2418cb3f2caafcb661b2b":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"2aaf95a7cdeb424bb369b658b0d91850":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"439a8d79e8064125b694e23d8b3cda99":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"05c7968b32744985bdd67900cc5cc5d0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e90def295593458e99241c538186c3b5":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"8fb7fa4f8a274d3eb3e58953b1e673b0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"6404a027f5b0439786996b45695ea17c":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"e7163211ff064cf68f2a9a92a1a44b14":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_75da1ca588cd427083ebcc98af74ad45","IPY_MODEL_a0e64b31b0744d6f9a540d6d71f29898","IPY_MODEL_0fda3d9d81764040b701f44c022d3a97"],"layout":"IPY_MODEL_a629a4f39f904d918cfb1940f2756cb1"}},"75da1ca588cd427083ebcc98af74ad45":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_25b8bf991b234f30af21842b423e8c7d","placeholder":"","style":"IPY_MODEL_dd1377f789ad4439b6bf99843fe4ca9a","value":"Downloading data: 100%"}},"a0e64b31b0744d6f9a540d6d71f29898":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_92a3e0edfd034150b1ef3f07f21957c5","max":44307561,"min":0,"orientation":"horizontal","style":"IPY_MODEL_caf3a07d739144cca5a246be40ed1d2c","value":44307561}},"0fda3d9d81764040b701f44c022d3a97":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_3f4d8437a14d42f1adb2314b8f090f91","placeholder":"","style":"IPY_MODEL_de5acf3da485445d9955603111bc9bb1","value":" 44.3M/44.3M [00:01<00:00, 31.4MB/s]"}},"a629a4f39f904d918cfb1940f2756cb1":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"25b8bf991b234f30af21842b423e8c7d":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"dd1377f789ad4439b6bf99843fe4ca9a":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"92a3e0edfd034150b1ef3f07f21957c5":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"caf3a07d739144cca5a246be40ed1d2c":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"3f4d8437a14d42f1adb2314b8f090f91":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"de5acf3da485445d9955603111bc9bb1":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"49606713136e4b4f809e88edec0ee31f":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_41a9ff9396454511ac9ec7cb8cd73999","IPY_MODEL_90f3e5054101499a9d623edd73a58aaf","IPY_MODEL_8d2a2929aed1450f909f67a82efb072c"],"layout":"IPY_MODEL_00daf2c57f724c5b8581554ca2f2b2c1"}},"41a9ff9396454511ac9ec7cb8cd73999":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_221f374f77914569ad4cf0464e8c183e","placeholder":"","style":"IPY_MODEL_f52c132e71ce4f919abcff5a7df10a52","value":"Generating train split: "}},"90f3e5054101499a9d623edd73a58aaf":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_45e6fb6a4f144daab3f859cadabff196","max":1,"min":0,"orientation":"horizontal","style":"IPY_MODEL_fdcf4a1a700f4688ab19d55af784cf42","value":1}},"8d2a2929aed1450f909f67a82efb072c":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_f02cb5a79f404c3db58a86e010d929b5","placeholder":"","style":"IPY_MODEL_64763f108b13475d85f44f4eb1f4a7f7","value":" 51760/0 [00:01<00:00, 42051.37 examples/s]"}},"00daf2c57f724c5b8581554ca2f2b2c1":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"221f374f77914569ad4cf0464e8c183e":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"f52c132e71ce4f919abcff5a7df10a52":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"45e6fb6a4f144daab3f859cadabff196":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":"20px"}},"fdcf4a1a700f4688ab19d55af784cf42":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"f02cb5a79f404c3db58a86e010d929b5":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"64763f108b13475d85f44f4eb1f4a7f7":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"add655fe6f304c5b8c7f5c374f73fe84":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_76de4b26f31b45f9a8eb31413badd4d0","IPY_MODEL_4c31d1803e134ed38a67c9cd61097a28","IPY_MODEL_3edd0e9e876f4429be155e3378922f30"],"layout":"IPY_MODEL_b1e594f36f3c4751b648abcbb74c28cd"}},"76de4b26f31b45f9a8eb31413badd4d0":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_304eef6608044f45ae0e78c4ce32233a","placeholder":"","style":"IPY_MODEL_fb2e02192e1f4972bc75441d217168e1","value":"Map: 100%"}},"4c31d1803e134ed38a67c9cd61097a28":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_92d2d40d99304e18b11bcb01093ad510","max":51760,"min":0,"orientation":"horizontal","style":"IPY_MODEL_4dc2fb7510824a78bd12f58fc2594a89","value":51760}},"3edd0e9e876f4429be155e3378922f30":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_8b01eafd97dd48cfb86952d0946aa856","placeholder":"","style":"IPY_MODEL_0ba86603e45d473f89ce572c6874f2fe","value":" 51760/51760 [00:01<00:00, 41134.95 examples/s]"}},"b1e594f36f3c4751b648abcbb74c28cd":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"304eef6608044f45ae0e78c4ce32233a":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"fb2e02192e1f4972bc75441d217168e1":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"92d2d40d99304e18b11bcb01093ad510":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"4dc2fb7510824a78bd12f58fc2594a89":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"8b01eafd97dd48cfb86952d0946aa856":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0ba86603e45d473f89ce572c6874f2fe":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"28408ab4afb7494f8cb2f834458f411c":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_b85ef639d1f54fb3ac8902fb66be79eb","IPY_MODEL_0c266c0637064fbe8d548d0876c6b315","IPY_MODEL_aa315e0b196d4b80a114690a689d5fbf"],"layout":"IPY_MODEL_5b6f098adcb84717b162152ddaadfa0b"}},"b85ef639d1f54fb3ac8902fb66be79eb":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_caaf2d5a555f41fab3b74f3096375ba9","placeholder":"","style":"IPY_MODEL_1789d926e02549b19e4aca59f44f320a","value":"Map (num_proc=2): 100%"}},"0c266c0637064fbe8d548d0876c6b315":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_3816c6f816784e5ca11a458bbf790031","max":51760,"min":0,"orientation":"horizontal","style":"IPY_MODEL_954d6540772d40a99f642c2524db3a0c","value":51760}},"aa315e0b196d4b80a114690a689d5fbf":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_fdc5073e7cc24edc8c5b920a363b4a40","placeholder":"","style":"IPY_MODEL_f69d18a0b745434d8d078939e3a0c7fc","value":" 51760/51760 [00:42<00:00, 1876.91 examples/s]"}},"5b6f098adcb84717b162152ddaadfa0b":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"caaf2d5a555f41fab3b74f3096375ba9":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"1789d926e02549b19e4aca59f44f320a":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"3816c6f816784e5ca11a458bbf790031":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"954d6540772d40a99f642c2524db3a0c":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"fdc5073e7cc24edc8c5b920a363b4a40":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"f69d18a0b745434d8d078939e3a0c7fc":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}}}},"kaggle":{"accelerator":"nvidiaTeslaT4","dataSources":[{"sourceId":8511152,"sourceType":"datasetVersion","datasetId":5080560},{"sourceId":8534734,"sourceType":"datasetVersion","datasetId":4675483}],"isInternetEnabled":true,"language":"python","sourceType":"notebook","isGpuEnabled":true}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"markdown","source":"To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n\n
\n
\n
Join Discord if you need help + support us if you can!\n
\n\nTo install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth#installation-instructions---conda).\n\nYou will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp).","metadata":{"id":"IqM-T1RTzY6C"}},{"cell_type":"markdown","source":"## Kaggle is slow - you'll have to wait **5 minutes** for it to install.\n\nI suggest you to use our free Colab notebooks instead. I linked our Mistral Colab notebook here: [notebook](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing)","metadata":{}},{"cell_type":"code","source":"%%capture\n!pip install -U \"xformers<0.0.26\" --index-url https://download.pytorch.org/whl/cu121\n!pip install \"unsloth[kaggle-new] @ git+https://github.com/unslothai/unsloth.git\"\n\n# Temporary fix for https://github.com/huggingface/datasets/issues/6753\n!pip install datasets==2.16.0 fsspec==2023.10.0 gcsfs==2023.10.0\n\nimport os\nos.environ[\"WANDB_DISABLED\"] = \"true\"","metadata":{"execution":{"iopub.status.busy":"2024-05-25T04:02:01.128438Z","iopub.execute_input":"2024-05-25T04:02:01.128773Z","iopub.status.idle":"2024-05-25T04:05:55.463554Z","shell.execute_reply.started":"2024-05-25T04:02:01.128749Z","shell.execute_reply":"2024-05-25T04:05:55.462209Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"* We support Llama, Mistral, CodeLlama, TinyLlama, Vicuna, Open Hermes etc\n* And Yi, Qwen ([llamafied](https://huggingface.co/models?sort=trending&search=qwen+llama)), Deepseek, all Llama, Mistral derived archs.\n* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n* [**NEW**] With [PR 26037](https://github.com/huggingface/transformers/pull/26037), we support downloading 4bit models **4x faster**! [Our repo](https://huggingface.co/unsloth) has Llama, Mistral 4bit models.","metadata":{"id":"r2v_X2fA0Df5"}},{"cell_type":"code","source":"from unsloth import FastLanguageModel\nimport torch\nmax_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\ndtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\nload_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.\n\n# 4bit pre quantized models we support for 4x faster downloading + no OOMs.\nfourbit_models = [\n \"unsloth/mistral-7b-bnb-4bit\",\n \"unsloth/mistral-7b-instruct-v0.2-bnb-4bit\",\n \"unsloth/llama-2-7b-bnb-4bit\",\n \"unsloth/llama-2-13b-bnb-4bit\",\n \"unsloth/codellama-34b-bnb-4bit\",\n \"unsloth/tinyllama-bnb-4bit\",\n \"unsloth/llama-3-8b-bnb-4bit\",\n \"unsloth/llama-3-70b-bnb-4bit\",\n] # More models at https://huggingface.co/unsloth\n\nmodel, tokenizer = FastLanguageModel.from_pretrained(\n model_name = \"Orenguteng/Llama-3-8B-Lexi-Uncensored\", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B\n max_seq_length = max_seq_length,\n dtype = dtype,\n load_in_4bit = load_in_4bit,\n use_gradient_checkpointing = \"unsloth\", # We cut memory usage by a further 30% and now support fine-tuning of LLMs with 4x longer context windows!\n # token = \"hf_...\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n)","metadata":{"id":"QmUBVEnvCDJv","outputId":"5eff0d61-05b4-471c-eea2-c2e84a915109","execution":{"iopub.status.busy":"2024-05-25T04:06:55.008762Z","iopub.execute_input":"2024-05-25T04:06:55.009117Z","iopub.status.idle":"2024-05-25T04:07:35.338067Z","shell.execute_reply.started":"2024-05-25T04:06:55.009090Z","shell.execute_reply":"2024-05-25T04:07:35.337098Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"We now add LoRA adapters so we only need to update 1 to 10% of all parameters!","metadata":{"id":"SXd9bTZd1aaL"}},{"cell_type":"code","source":"model = FastLanguageModel.get_peft_model(\n model,\n r = 32, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n \"gate_proj\", \"up_proj\", \"down_proj\",],\n lora_alpha = 16,\n lora_dropout = 0, # Supports any, but = 0 is optimized\n bias = \"none\", # Supports any, but = \"none\" is optimized\n use_gradient_checkpointing = \"unsloth\", # 4x longer contexts auto supported!\n random_state = 3407,\n use_rslora = False, # We support rank stabilized LoRA\n loftq_config = None, # And LoftQ\n)","metadata":{"id":"6bZsfBuZDeCL","outputId":"b630cc80-ff95-45a2-cc0d-38666010d73b","execution":{"iopub.status.busy":"2024-05-25T04:23:33.920458Z","iopub.execute_input":"2024-05-25T04:23:33.920865Z","iopub.status.idle":"2024-05-25T04:23:34.015573Z","shell.execute_reply.started":"2024-05-25T04:23:33.920836Z","shell.execute_reply":"2024-05-25T04:23:34.014490Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"\n### Data Prep\nWe now use the Alpaca dataset from [yahma](https://huggingface.co/datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep.\n\n**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n\n**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!\n\nIf you want to use the `ChatML` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing).\n\nFor text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing).","metadata":{"id":"vITh0KVJ10qX"}},{"cell_type":"code","source":"from datasets import load_dataset\nimport json\nfrom unsloth.chat_templates import get_chat_template\n\ntokenizer = get_chat_template(\n tokenizer,\n chat_template = \"llama-3\", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth\n #mapping = {\"role\" : \"from\", \"content\" : \"value\", \"user\" : \"human\", \"assistant\" : \"gpt\"}, # ShareGPT style\n map_eos_token = True, # Maps <|im_end|> to instead\n)\n\ndef formatting_prompts_func(convos):\n texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]\n return { \"text\" : texts, }\n\nwith open(\"/kaggle/input/the-group-chat/output-10k-c-dropout.json\") as chatfile:\n convos = [json.loads(j) for j in chatfile.readlines()]\n\nwith open(\"/kaggle/input/toxicqa/toxicQAfinal.json\") as chatfile:\n convos += [json.loads(j) for j in chatfile.readlines()]\n \ndataset = formatting_prompts_func(convos)","metadata":{"id":"LjY75GoYUCB8","outputId":"9f40f734-788c-4793-c1af-e9d003337612","execution":{"iopub.status.busy":"2024-05-25T04:28:11.710969Z","iopub.execute_input":"2024-05-25T04:28:11.711971Z","iopub.status.idle":"2024-05-25T04:28:13.097432Z","shell.execute_reply.started":"2024-05-25T04:28:11.711936Z","shell.execute_reply":"2024-05-25T04:28:13.096601Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"from datasets import Dataset\ndataset = Dataset.from_dict(dataset)","metadata":{},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"\n### Train the model\nNow let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!","metadata":{"id":"idAEIeSQ3xdS"}},{"cell_type":"code","source":"from trl import SFTTrainer\nfrom transformers import TrainingArguments\n\ntrainer = SFTTrainer(\n model = model,\n tokenizer = tokenizer,\n train_dataset = dataset,\n dataset_text_field = \"text\",\n max_seq_length = max_seq_length,\n dataset_num_proc = 2,\n packing = False, # Can make training 5x faster for short sequences.\n args = TrainingArguments(\n per_device_train_batch_size = 2,\n gradient_accumulation_steps = 4,\n warmup_steps = 5,\n num_train_epochs=1,\n learning_rate = 2e-4,\n fp16 = not torch.cuda.is_bf16_supported(),\n bf16 = torch.cuda.is_bf16_supported(),\n logging_steps = 1,\n optim = \"adamw_8bit\",\n weight_decay = 0.01,\n lr_scheduler_type = \"linear\",\n seed = 3407,\n output_dir = \"outputs\",\n report_to = \"none\",\n ),\n)","metadata":{"id":"95_Nn-89DhsL","outputId":"4b809e6d-271f-446f-dec8-abe0d13259f8","execution":{"iopub.status.busy":"2024-05-25T04:28:27.973142Z","iopub.execute_input":"2024-05-25T04:28:27.973856Z","iopub.status.idle":"2024-05-25T04:28:28.119131Z","shell.execute_reply.started":"2024-05-25T04:28:27.973822Z","shell.execute_reply":"2024-05-25T04:28:28.117976Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"#@title Show current memory stats\ngpu_stats = torch.cuda.get_device_properties(0)\nstart_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\nmax_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\nprint(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\nprint(f\"{start_gpu_memory} GB of memory reserved.\")","metadata":{"id":"2ejIt2xSNKKp","cellView":"form","outputId":"4815a050-0c0f-4a6a-9d93-b01c44eaea35","execution":{"iopub.status.busy":"2024-04-06T16:21:16.730485Z","iopub.execute_input":"2024-04-06T16:21:16.730782Z","iopub.status.idle":"2024-04-06T16:21:16.737279Z","shell.execute_reply.started":"2024-04-06T16:21:16.730754Z","shell.execute_reply":"2024-04-06T16:21:16.736403Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"trainer_stats = trainer.train()","metadata":{"id":"yqxqAZ7KJ4oL","outputId":"3cf26aac-6042-4458-c4a6-d8849efb6a95","execution":{"iopub.status.busy":"2024-04-06T16:21:16.738651Z","iopub.execute_input":"2024-04-06T16:21:16.739026Z","iopub.status.idle":"2024-04-06T16:30:10.783093Z","shell.execute_reply.started":"2024-04-06T16:21:16.738993Z","shell.execute_reply":"2024-04-06T16:30:10.782238Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"#@title Show final memory and time stats\nused_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\nused_memory_for_lora = round(used_memory - start_gpu_memory, 3)\nused_percentage = round(used_memory /max_memory*100, 3)\nlora_percentage = round(used_memory_for_lora/max_memory*100, 3)\nprint(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\nprint(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\nprint(f\"Peak reserved memory = {used_memory} GB.\")\nprint(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\nprint(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\nprint(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")","metadata":{"id":"pCqnaKmlO1U9","cellView":"form","outputId":"cf63d152-e152-468c-ba0d-938e0d2f71a0","execution":{"iopub.status.busy":"2024-04-06T16:30:10.784435Z","iopub.execute_input":"2024-04-06T16:30:10.7848Z","iopub.status.idle":"2024-04-06T16:30:10.791887Z","shell.execute_reply.started":"2024-04-06T16:30:10.784767Z","shell.execute_reply":"2024-04-06T16:30:10.791092Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"\n### Inference\nLet's run the model! You can change the instruction and input - leave the output blank!","metadata":{"id":"ekOmTR1hSNcr"}},{"cell_type":"code","source":"if False:\n # alpaca_prompt = Copied from above\n FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n inputs = tokenizer(\n [\n alpaca_prompt.format(\n \"Continue the fibonnaci sequence.\", # instruction\n \"1, 1, 2, 3, 5, 8\", # input\n \"\", # output - leave this blank for generation!\n )\n ], return_tensors = \"pt\").to(\"cuda\")\n\n outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n tokenizer.batch_decode(outputs)","metadata":{"id":"kR3gIAX-SM2q","outputId":"5b71f982-38c0-44c8-a4e5-58cd20b5a585","execution":{"iopub.status.busy":"2024-04-06T16:30:10.793045Z","iopub.execute_input":"2024-04-06T16:30:10.793321Z","iopub.status.idle":"2024-04-06T16:30:13.837651Z","shell.execute_reply.started":"2024-04-06T16:30:10.793298Z","shell.execute_reply":"2024-04-06T16:30:13.836679Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":" You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!","metadata":{"id":"CrSvZObor0lY"}},{"cell_type":"code","source":"if False:\n # alpaca_prompt = Copied from above\n FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n inputs = tokenizer(\n [\n alpaca_prompt.format(\n \"Continue the fibonnaci sequence.\", # instruction\n \"1, 1, 2, 3, 5, 8\", # input\n \"\", # output - leave this blank for generation!\n )\n ], return_tensors = \"pt\").to(\"cuda\")\n\n from transformers import TextStreamer\n text_streamer = TextStreamer(tokenizer)\n _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)","metadata":{"id":"e2pEuRb1r2Vg","outputId":"084aab62-2122-436a-c0cb-8871986640eb","execution":{"iopub.status.busy":"2024-04-06T16:30:13.840849Z","iopub.execute_input":"2024-04-06T16:30:13.841138Z","iopub.status.idle":"2024-04-06T16:30:15.541954Z","shell.execute_reply.started":"2024-04-06T16:30:13.841114Z","shell.execute_reply":"2024-04-06T16:30:15.54076Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"\n### Saving, loading finetuned models\nTo save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n\n**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!","metadata":{"id":"uMuVrWbjAzhc"}},{"cell_type":"code","source":"#model.save_pretrained(\"lora_model\") # Local saving\nmodel.push_to_hub(\"scoliono/groupchat_lora_lexi_8b\", token = \"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\")","metadata":{"id":"upcOlWe7A1vc","execution":{"iopub.status.busy":"2024-04-06T16:30:15.543701Z","iopub.execute_input":"2024-04-06T16:30:15.544355Z","iopub.status.idle":"2024-04-06T16:30:16.234142Z","shell.execute_reply.started":"2024-04-06T16:30:15.544315Z","shell.execute_reply":"2024-04-06T16:30:16.233363Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:","metadata":{"id":"AEEcJ4qfC7Lp"}},{"cell_type":"code","source":"if False:\n from unsloth import FastLanguageModel\n model, tokenizer = FastLanguageModel.from_pretrained(\n model_name = \"scoliono/groupchat_lora_instruct\", # YOUR MODEL YOU USED FOR TRAINING\n max_seq_length = max_seq_length,\n dtype = dtype,\n load_in_4bit = load_in_4bit,\n )\n FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n\n # alpaca_prompt = You MUST copy from above!\n\n inputs = tokenizer(\n [\n alpaca_prompt.format(\n \"What is a famous tall tower in Paris?\", # instruction\n \"\", # input\n \"\", # output - leave this blank for generation!\n )\n ], return_tensors = \"pt\").to(\"cuda\")\n\n outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n tokenizer.batch_decode(outputs)","metadata":{"id":"MKX_XKs_BNZR","outputId":"05e5a193-dab0-41db-e07c-4b3afbdd7932","execution":{"iopub.status.busy":"2024-04-06T16:30:16.235412Z","iopub.execute_input":"2024-04-06T16:30:16.236127Z","iopub.status.idle":"2024-04-06T16:30:20.286318Z","shell.execute_reply.started":"2024-04-06T16:30:16.236092Z","shell.execute_reply":"2024-04-06T16:30:20.285241Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**.","metadata":{"id":"QQMjaNrjsU5_"}},{"cell_type":"code","source":"if False:\n # I highly do NOT suggest - use Unsloth if possible\n from peft import AutoPeftModelForCausalLM\n from transformers import AutoTokenizer\n model = AutoPeftModelForCausalLM.from_pretrained(\n \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n load_in_4bit = load_in_4bit,\n )\n tokenizer = AutoTokenizer.from_pretrained(\"lora_model\")","metadata":{"id":"yFfaXG0WsQuE","execution":{"iopub.status.busy":"2024-04-06T16:30:20.289045Z","iopub.execute_input":"2024-04-06T16:30:20.289914Z","iopub.status.idle":"2024-04-06T16:30:20.294953Z","shell.execute_reply.started":"2024-04-06T16:30:20.289877Z","shell.execute_reply":"2024-04-06T16:30:20.293978Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"### Saving to float16 for VLLM\n\nWe also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens.","metadata":{"id":"f422JgM9sdVT"}},{"cell_type":"code","source":"# Merge to 16bit\nif False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\nif False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n\n# Merge to 4bit\nif False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\nif False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n\n# Just LoRA adapters\nif False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\nif False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"lora\", token = \"\")","metadata":{"id":"iHjt_SMYsd3P","execution":{"iopub.status.busy":"2024-04-06T16:30:20.295979Z","iopub.execute_input":"2024-04-06T16:30:20.296285Z","iopub.status.idle":"2024-04-06T16:30:20.308979Z","shell.execute_reply.started":"2024-04-06T16:30:20.29626Z","shell.execute_reply":"2024-04-06T16:30:20.308167Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"### GGUF / llama.cpp Conversion\nTo save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n\nSome supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K.","metadata":{"id":"TCv4vXHd61i7"}},{"cell_type":"code","source":"# Save to 8bit Q8_0\nif False: model.save_pretrained_gguf(\"model\", tokenizer,)\nif False: model.push_to_hub_gguf(\"hf/model\", tokenizer, token = \"\")\n\n# Save to 16bit GGUF\nif False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"f16\")\nif False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"f16\", token = \"\")\n\n# Save to q4_k_m GGUF\nif False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"q4_k_m\")\nif False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"q4_k_m\", token = \"\")","metadata":{"id":"FqfebeAdT073","execution":{"iopub.status.busy":"2024-04-06T16:30:20.310103Z","iopub.execute_input":"2024-04-06T16:30:20.310443Z","iopub.status.idle":"2024-04-06T16:30:20.324421Z","shell.execute_reply.started":"2024-04-06T16:30:20.310419Z","shell.execute_reply":"2024-04-06T16:30:20.323668Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":"Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html).","metadata":{"id":"bDp0zNpwe6U_"}},{"cell_type":"markdown","source":"And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n\nSome other links:\n1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)\n2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)\n3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)\n6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n7. `ChatML` for ShareGPT datasets, [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing)\n8. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)\n\n\n
\n
\n
Support our work if you can! Thanks!\n
","metadata":{"id":"Zt9CHJqO6p30"}}]}
\ No newline at end of file